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Abstract

Here, we identify CD44(+)CD90(+)CD73(+)CD34(2)CD45(2) cells within the adult human arterial adventitia with properties
of multipotency which were named vascular wall-resident multipotent stem cells (VW-MPSCs). VW-MPSCs exhibit typical
mesenchymal stem cell characteristics including cell surface markers in immunostaining and flow cytometric analyses, and
differentiation into adipocytes, chondrocytes and osteocytes under culture conditions. Particularly, TGFß1 stimulation up-
regulates smooth muscle cell markers in VW-MPSCs. Using fluorescent cell labelling and co-localisation studies we show that
VW-MPSCs differentiate to pericytes/smooth muscle cells which cover the wall of newly formed endothelial capillary-like
structures in vitro. Co-implantation of EGFP-labelled VW-MPSCs and human umbilical vein endothelial cells into SCID mice
subcutaneously via Matrigel results in new vessels formation which were covered by pericyte- or smooth muscle-like cells
generated from implanted VW-MPSCs. Our results suggest that VW-MPSCs are of relevance for vascular morphogenesis,
repair and self-renewal of vascular wall cells and for local capacity of neovascularization in disease processes.
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Introduction

New formation of blood vessels has undoubtedly been shown

to be essential in physiologic as well as pathologic processes

[1,2]. The vessel wall has usually been thought to be relatively

quiescent. While until more than a decade ago it was generally

accepted that new blood vessels in the adult are only provided

by angiogenesis the discovery of endothelial progenitor cells

(EPCs) circulating in the peripheral blood and their contribution

to neovascularization led to a crucial revision of this concept [3].

Despite some still controversial findings, today it is widely

accepted that new vessels in the adult are formed by

angiogenesis and postnatal vasculogenesis [4,5]. The existence

of a vasculogenic zone within the vascular adventitia has

recently been identified in adult human vessels. This niche-like

zone is believed to act as source of progenitors for postnatal

vasculogenesis [6–8]. From the literature it is already apparent

that a complex interplay between circulating and resident

vascular wall progenitors takes place during embryonal and

postnatal life. A structural and functional disarray of these

intimate stem cell compartments could hamper appropriate

vascular repair, the development of vascular disease being the

direct clinical consequence in adult life [9].

Beside these progenitors, adult arteries may contain cells with

characteristics of ancestral stem cells [7,10,11]. Based on these findings

someone can hypothesize that a cell type, normally involved in

physiological vascular homeostasis, might also act as reservoir of

undifferentiated cells ready to supply the cellular demands and

acquiring local phenotypic characteristics [12]. Multipotent mesen-

chymal stem cells (MSCs) would be good candidates for supplying this

reserve function. MSCs are multipotent and are commonly

characterized by their ability to adhere on plastic, to express a typical

panel of surface markers and to differentiate into osteocytes,

chondrocytes and adipocytes in vitro. Generally, MSCs are isolated

from bone marrow or fatty tissue [13,14]. There is little information

regarding the natural distribution of these cells in different organs and

their biology in the living organism. The exact identification of the

MSC niche is necessary to validate results obtained in vitro and to

further the knowledge of their physiological functions. MSCs are

supposed to be one of the most promising types of adult stem cells for

cell-based therapies [15]. The establishment of a MSC niche in the

vascular adventitia provides a basis for the rational design of additional

in vivo therapeutic approaches. Beside bone marrow (BM)-derived

MSCs recent studies suggest that the distribution of MSCs throughout

the post-natal organism is related to their existence in the vascular

adventitia [16,17]. However, the precise native localization of MSCs

and their cellular characteristics in their native niche remains obscure.

Furthermore, the precise in vivo MSC attribution remains to be

established. Unfortunately, there is no definitive marker allowing the

prospective isolation of MSCs from fresh tissue [18,19]. A recent

publication demonstrated that a subtype of CD34+ cells of the

vasculogenic zone, which were found to be positive for several MSC
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markers under certain in vitro culture conditions, possesses the

capacity to act as perivascular support cells [20].

Taken together, we hypothesized that the wall of adult blood

vessels harbours multipotent stem cells beside the lineage

committed progenitors, which may represent an important

source for pericytes and smooth muscle cells (SMC) during

angiogenesis and postnatal vasculogenesis. Here, we show that

CD44(+)CD73(+)CD34(2)CD45(2) VW-MPSCs which exhibit

typical MSC characteristics and predominantly reside within the

adventitial vasculogenic zone of human arteries. Combining

direct labelling with EGFP and immunostaining for specific

markers we show that VW-MPSCs isolated from these arteries

via CD44+ immunoselection exhibit selective adherence on

plastic, differentiate into TAGLN+ cells, and cover the new

vessels formed by endothelial cells (EC). Thus, vascular wall-

resident MPSCs might serve as a local source for pericytes and

SMC in all organs and contribute to stabilization and

maturation of new blood vessels; processes of broad spectrum

of relevance e.g. in tumor, atherosclerosis, tissue regeneration

and therapeutic angiogenesis.

Materials and Methods

Reagents and antibodies
Human VEGF165, human PDGF-BB, FGF2 and TGFb1 were

from BioVision (Mountain View, USA). Growth-Factor-Reduced

(GFR)-Matrigel was from BD Biosciences (Heidelberg, Germany).

TOTOH-3-iodide was from Invitrogen (Karlsruhe, Germany).

Mouse anti-human CD44 antibody was from antibodies online

(Aachen, Germany), CD90 antibody from ebioscience (San Diego,

USA), CD105 and TAGLN antibodies from Acris Antibodies

(Herford, Germany), CD105, Stro1, CD73, aSMA, KDR, Oct3/4

and PDGFRb antibodies were from Santa Cruz (Santa Cruz,

USA), rabbit anti-RGS5 antibody was from Invitrogen, calponin1

antibody was from Epitomics (Burlingame, USA), CD34 and

CD31 antibodies was from Dako (Hamburg, Germany). cDNA

from human ES cells was kindly provided by O. Brüstle (Bonn,

Germany). PKH67 Green and PKH26 Red Fluorescent-Cell-

Linker Kit for general cell membrane labelling were from Sigma

(Steinheim, Germany) and used according to the manufacture’s

instruction. All peroxidase- and fluorescently-labelled secondary

antibodies were from Jackson IR Laboratories (West Grove, USA).

Tissue and Cells
Human internal thoracic artery (hITA) samples were

obtained during surgery (sparse material) according to local

ethical and biohazard regulations and provided from the

Clinics of Thoracic and Cardiovascular Surgery, University

Hospital Essen for our institute. All these studies including

human tissue samples were approved by the local ethic

committee. Informed consent (written form, Nr.10-4363) was

obtained from Ethik-Kommission, University Medical Faculty,

Essen, Germany. HAoSMC and HUVEC were from Lonza

(Walkersville, USA) and cultivated as recommended by the

manufactures in complete SmGM-2 and EGM-2 medium.

Human lung adenocarcinoma cell line A549 and prostate

carcinoma cell line PC3 was obtained from ATCC (Rockville,

USA). Cells were cultured in DMEM (GIBCO, Karlsruhe,

Germany) supplemented with 10% FCS, 100 U/ml penicillin

and 100 mg/ml streptomycin. For the generation of A549 and

PC3 cell-conditioned media cells were incubated in NGM/2%

FCS for 24 hours. As control NGM was incubated for the same

time at 37uC without cells.

Isolation and purification of VW-MPSCs
Specimens of hITA were excised under a dissection microscope

and contaminating fatty and muscle tissue was removed. After

several washes, vessels were mechanically minced and dissociated

for 30–40 minutes at 37uC in OptiMEM I medium (GIBCO)

containing 0.2% type 2-collagenase (Worthington, Lakewood,

USA) and 5 U/ml elastase (Sigma). On dissociation, cells were

washed twice in PBS containing 5% FCS (3006 g, 10 minutes,

4uC). Cellular suspensions were passed through 70 mm pore size

filters. Highly pure VW-MPSCs were generated using a CD44

antibody and MACS technology (Miltenyi Biotec). MACS was

used according to the manufacturer’s instructions and as described

previously [21]. Primary VW-MPSCs were cultivated on plastic

cell culture plates using complete human MSC-GM media

(PromoCell, Heidelberg, Germany). Medium was removed

24 hours after initial plating, non-adherent cells were washed

away and fresh medium was replaced.

Generation of spheroids
Matrigel plug specimens were performed as previously de-

scribed [22]. Spheroids containing 100 HUVEC and 100 VW-

MPSCs per spheroid were generated using the hanging drop

protocol. Indicated cell numbers of HUVEC and MPSCs were

mixed in medium containing methocell (20% methocell stock

solution and 80% normal growth media) and plated onto non-

adherent plastic square petri dishes in 50 ml drops containing 200

HUVEC/MPSCs each. Plates were turned upside down and

incubated for 24 hrs in a humidified atmosphere at 37uC. For

EGFP labelling VW-MPSC were transfected with the EGFP

encoding vector pN1-EGFP using PrimeFect DNA II (Lonza)

according to the manufactures instructions and 24 hours prior

spheroids generation. Transfection efficiencies were usually about

50%. The next day spheroids were harvested using sterile 5 ml

pipettes and 5 ml PBS/10% FCS per dish and collected by brief

centrifugation (5 minutes at 150 g, without brake, room temper-

ature). Spheroids were resuspended in pre-cooled GFR-Matrigel

(1000 spheroids/300 ml Matrigel) containing the different growth

factors (VEGF-A, FGF2: 10 ng/ml each; TGFb1: 5 ng/ml).

In vitro angiogenesis assay
VW-MPSCs were used to generate spheroids of defined cell

number (400 cells/spheroid) and used for in-gel sprouting

angiogenesis experiments as previously described [21]. In brief,

defined cell numbers of VW-MPSCs were mixed in methocell

medium and plated onto non-adherent plastic square petri dishes

in 50 ml drops containing 500 MPSCs each. Spheroids were

harvested as described above, resuspended in pre-cooled GFR-

Matrigel (20–30 spheroids/250 ml Matrigel) and plated in 48-well

cell culture plates. After 30 minutes 250 ml NGM was added

containing the different growth factors (VEGF-A, PDGF-BB,

FGF2: 10 ng/ml each; TGFb1: 5 ng/ml) or tumor cell condi-

tioned medium (ratio 1:1). Data are presented as mean 6 SD from

three (FGF2) and four (VEGF, PDGF, TGF, tumor cell

supernatant) independent experiments.

Animals and Matrigel plug assay
Scid mice were purchased from Janvier (Le Genest-St-Isle,

France) and received human care according to the guidelines of

the NIH, USA. Animal experiments were approved by the animal

ethics committee in NRW, Germany (Regierungspräsidium

Düsseldorf Az.8.87-50.10.37.09.183G1050/09). Matrigel plugs

were performed and collected as previously described [22]. In

brief, 14 mice were anesthetized by injection of intraperitoneal
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Rompun/Hostaket and the pre-cooled GFR-Matrigel-cell solution

(300 ml/injection) was injected subcutaneously. At day 14, mice

were killed and plugs were removed. Plug samples were fixed with

4% paraformaldehyde (PFA) and subjected for paraffin embed-

ding and sectioning. Experiments were repeated twice (28 mice in

total).

Trilineage differentiation assay
Differentiation of VW-MPSCs into adipocytes, chondrocytes

and osteocytes was done using ready-to-use differentiation media

from Lonza (hMSC Differentiation BulletKit – Adipogenic, PT-

3004; -Chondrogenic, PT-3003; -Osteogenic, PT-3002) according

to the manufactures instructions. Adipogenic differentiation was

verified using Oil red staining, chondrogenic differentiation was

verified using Collagen type II antibody (Santa Cruz) and

immunohistochemitry and osteogenic differentiation was verified

using NBT/BCIP staining (Sigma) for alkaline phosphatase

activity.

Tube formation assay (Matrigel Assay)
The tube formation was performed as previously described [21].

In brief, VW-MPSCs were seeded onto GFR-Matrigel in NGM

with or without VEGF-A or FGF2 (10 ng/ml). Capillary-like tube

formation was analysed using light and confocal microscopy at

indicated time points.

Immunohistochemistry and immunofluorescence
Paraffin embedded tissue sections were hydrated using a

descending alcohol series, incubated for 10–20 minutes in target

retrieval solution (Dako) and incubated with blocking solution (2%

FCS/PBS). After permeabilisation, sections were incubated with

primary antibodies over night at 4uC. Antigen was detected with a

peroxidase-conjugated secondary antibody (1/250) and DAB

staining (Dako). Specimens were analyzed by phase contrast

microscopy. For immunofluorescene analysis the antigen was

detected with an anti-rabbit Alexa488 and anti-mouse Alexa555-

conjugated secondary antibody (1/500). TOTOH-3 iodide was

used for nuclei staining. For immunocytochemistry VW-MPSCs

were plated on chamber slides (BD Bioscience) prior fixation with

4% PFA, washed (PBS) and incubated with blocking solution (2%

NGS/PBS) for 30 minutes. After permeabilisation, cells were

incubated with antibodies to mouse anti-CD44, rabbit anti-RGS5,

rabbit anti-Sox2 (all 1/100) and to mouse anti-Oct3/4 (1/50).

Antigen was detected with fluorescently labelled secondary

antibodies as described above. Specimens were analyzed by

confocal microscopy.

RNA isolation and Real-Time RT-PCR (QRT-PCR)
RNA was isolated and QRT-PCR analysis was performed as

previously described [21]. Analysis was carried out using the

oligonucleotide primers listed in Table S1.

FACS and Western blot
For FACS analysis 5*106 cells were washed, fixed (4% PFA) on

ice (30 minutes), washed and resuspended in 100 ml of 1% BSA/

PBS containing diluted antibody (1/100) or corresponding isotype

control. After 45 min incubation on ice the cells were washed

twice with 1% BSA/PBS and resuspended in 400 ml of the same

buffer. For cell permeabilisation 0.5% Saponin was added to the

1% BSA/PBS solution. Stained cells were analyzed with FACS-

CaliburTM (BD Biosciences). Obtained results were evaluated with

WinMDI software. Whole cell lysates were generated by scraping

cells into ice-cold RIPA-P buffer (150 mmol/L NaCl, 1%

NP40, 0.5% sodium-desoxycholate, 0.1% sodium-dodecylsulfate,

50 mmol/L Tris/HCL pH 8, 10 mmol/L NaF, 1 mmol/L

Na3OV4, supplemented with complete Protease-Inhibitor-Cock-

tail (Roche) and performing 2–3 freeze-thaw cycles. Protein

samples (50–100 mg total protein) were subjected to SDS-PAGE

electrophoresis and Western blots were done as previously

described using TAGLN (1/2000), aSMA (1/2500) or bActin

(1/5000) antibodies [21].

Electron microscopy
Matrigel tissues were fixed with phosphate buffered glutaralde-

hyde (4.5%), contrasted with 1% osmiumtetraoxide and 1%

uranylacetate and embedded in EPONH. Thin sections (8 nm)

were cut and mounted on 200 Mesh hexagonal cooper grids. For

contrast enhancement uranylacetate and leadcitrate were applied.

A Zeiss transmission electron microscope (EM 902A) was used for

investigation at 80 KV. Digital image acquisition was performed

on a MegaViewII slow-scan-CCD camera connected to a PC

running ITEMH 5.0 software.

Statistical Analysis
Paired or unpaired two-tailed t-tests were performed using

GraphPad InStat3 software depending on effective matching of

analyzed data. SD is indicated by error bars. Significance was

assumed for P values ,0.05.

Results

Localisation of vascular wall-resident putative MSCs
Conforming our findings published previously [8] we found in

arterial ring assay studies aSMA+ cells migrating from the vessel

wall and covering new capillaries (Figure S1). Based on such

observations we wanted to know which type(s) of vascular wall-

resident progenitor or stem cells give(s) rise to these pericytes/

SMC. To identify such cells, and to characterize their localisation

pattern within the vessel wall precisely and marker proteins that

distinguish them from mature SMC we performed immunostain-

ing on sections of adult human internal thoracic artery (hITA).

The well known SMC marker aSMA was predominantly found in

the SMC layer (tunica media) (Figure 1A) as expected, as well as

the markers TAGLN, HAPLN, SM-MHC (not shown). Whereas

these markers and CD146 (Figure 1B) were exclusively located

within that vessel area, aSMA, and the known MSC marker CD73

and RGS5, a marker for developing pericytes, showed in addition

a dot-like distribution within the adventitia, indicating single cells

positive for these markers within the vasculogenic zone

(Figure 1A,C–F). Remarkably, CD90, nestin, CD44 and Sox2

were present within that zone (Figure 1G–N) clearly indicating the

presence of single cells exhibiting MSC characteristics within the

vasculogenic zone. Comparable results were obtained from

staining of human saphenous vein and radial artery (not shown).

In addition, sections were stained with isotype controls serving as

controls (not shown). We then performed ring assay studies to test

whether CD44+ cells are capable to migrate into the outside of the

vessel wall using small hITA fragments. CD44+ cells were found

within the Matrigel after 2–3 days of culture (Figure 1O,P) and

were also positive for the early pericyte marker NG2. For better

characterization of these cells in their native niche we performed

double immunostaining on hITA sections using antibodies against

typical MSC makers (Figure 2). Single CD44+ cells within

vasculogenic zone also express aSMA (Figure 2A–C), CD90

(Figure 2D–F), and nestin (Figure 2G–I), but not CD34 (Figure 2J–

K), a marker for endothelial and hematopoietic progenitors and

lack also CD146 expression (Figure 2L). Furthermore, single
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CD44+ cells within that zone express NG2 (Figure 2N–O) and

these cells migrate into the outside of the vessel wall when

performing ring assay studies (Figure 2P–R). In addition, sections

were stained with isotype controls serving as controls (Figure S2).

Improved purification of vascular wall-derived
multipotent stem cells

Next, we isolated the CD44+ cells with putative MSC properties

from the hITA wall and depleted them of contaminating cell types

using MACS-technology in combination with a monoclonal CD44

antibody followed by a selective adherence on plastic dishes in order

to characterize them in vitro. The purity of these cell preparations

was routinely .95% as analyzed by expression of a marker panel

including Stro1, CD105, CD73, CD44, CD90 and CD29 via FACS

(Figure 3A), indicating again a MSC-like profile of marker expression.

The absence of contaminating cell types such as mature EC or EPCs

and HPCs was demonstrated by lack of CD31, CD34, CD45, as well

as CD68, CD11b, CD19 expressing cells. Depletion of SMC was

shown by the absence of CD146 and PDGFRb. CD44+ cells plated

on plastic dishes showed flattened, fibroblast-like pattern typical for

MSCs and they form clonally cell aggregates upon culturing

(Figure 3B). Furthermore, isolated CD44+ vascular wall-derived cells

were positive for RGS5 as shown by immunofluorescence (IF).

Remarkably, they also express the stem cell marker Oct4 and Sox2 at

low level (Figure 3C). Sox2 and Oct4 expression was further

confirmed on mRNA level using QRT-PCR, as CD44+ cell isolates

express quite the same amount of Sox2 as compared to embryonic

stem cells and to a lesser extent Oct4 (Figure S3). In order to access

clonogenicity and multipotency of isolated CD44+ vascular wall-

derived cells, single-cell-derived clones were established by limited

dilution in a 96-well plate. In vitro, these cells could be differentiated

into adipocytes, chondrocytes as well as into osteocytes (Figure S4)

while human aortic SMC (hAoSMC) subjected to the same

Figure 1. Putative MSCs within the hITA wall. (A) Immunostainings of hITA sections show that aSMA (alpha smooth muscle actin) is mainly
detected in SMC, but also in single cells of vasculogenic zone (arrows). (B) CD146 staining is limited to the SMC layer. (C–F) CD73 and RGS5 (regulator
of G-protein signaling 5) show the same staining patterns as aSMA. (G–J) CD90 and nestin positive cells are seen in the vasculogenic zone within the
adventitia (arrows). (K) CD44 staining is only found in single cells within the adventitia, prominently near to the media (L, M) as visualized by higher
magnification (arrows). (N) Sox2 staining is also found in single cells within the adventitia. (O, P) After performing ring assay, when small hITA sections
were embedded in GFR-Matrigel and cultured for 2–7 days, after 2–3 days numerous cells positive for both CD44 and NG2 are detectable in Matrigel
(arrows) indicating the mobilization and sprouting capacity of the CD44+ putative MSCs from the hITA wall. Lu lumen, TM tunica media, Ad
adventitia, MG Matrigel. Dotted line marks the border between media and adventitia of the hITA wall. Bar A–C, E, G, I, K 50 mm; D, F, H, J, M, N 10 mm,
L, P 25 mm.
doi:10.1371/journal.pone.0020540.g001
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differentiation procedure did not differentiate into these cell types (not

shown). Thus, we will use the term vascular wall-resident multipotent

stem cells (VW-MPSCs) in the following for the CD44+ cells isolated

from human arterial adventitia.

In-gel sprouting and proliferation of cultured VW-MPSCs
We next investigated the effects of selective growth factors

involved in vessel formation and maturation such as VEGF-A,

PDGF-BB, FGF-2, TGFb1 and conditioned media of tumor cells

(A549 and PC3) on proliferation and differentiation of VW-

MPSCs. We cultured VW-MPSCs as spheroids to test their

sprouting capacity into the Matrigel after stimulation with

different cytokines (Figure 4A). Despite the high baseline invasion

capacity of VW-MPSCs the application of both tumor cell

supernatant and FGF-2 additionally increased their invasion

capacity (Figure 4B). However, a particularly reduced in-gel

sprouting was observed whenever TGFb1 was present in the

medium. The effect of TGFb1 treatment was reversed when

neutralizing TGFb1 antibody was added in the media (Figure

S5A). Next, the number of VW-MPSCs cultured in normal growth

media (NGM) with or without application of different growth

factors or tumor cell supernatant was quantified after 14 days

(Figure S5B). In presence of TGFb1 alone the total number of

VW-MPSC was significantly increased as compared to NGM

alone. Increased numbers of VW-MPSCs were found whenever

TGFb1 was present in culture.

Association and pericyte-like coverage of endothelial
tubes by VW-MPSCs

Culturing of fluorescently pre-labelled VW-MPSCs (green)

alone or co-culture of them with pre-labelled HUVEC (red) on

Growth-Factor-Reduced Matrigel in NGM resulted in cord

formation when VW-MPSCs were cultured alone and in

capillary-like tube formation when they were co-cultured with

HUVEC after 5–7 hours (Figure 5A–C). After 5 days, confocal

microscopic evaluation (Figure 5D–I) showed tube-like struc-

tures formed by HUVEC through the whole gel and VW-

MPSCs were tightly associated with HUVEC. In the presence

of VEGF (Figure 5E–I) the tube-like formation by HUVEC

and the coverage by VW-MPSCs were more pronounced as

compared to NGM alone. Higher magnification revealed that

tightly associated VW-MPSCs are wrapped around the

capillary-like structures (Figure 5G–I). Similar results were

obtained by FGF2 and TGFb1 application (not shown). The

pericyte-like behaviour was also observed when the fluores-

cently pre-labelled VW-MPSCs were co-cultured with HU-

VEC as spheroids in Matrigel (Figure S6).

Differential expression of VW-MPSCs vs. SMC marker
genes and VW-MPSCs differentiation into SMC

In order to identify unique and moreover suitable genes selectively

expressed in VW-MPSCs versus mature SMC, QRT-PCR analyses

were performed (Figure 6A–B). The known MSC markers CD90,

CD73 and CD105 were found to be slightly higher expressed in VW-

MPSCs whereas PDGFRa and NG2 were clearly stronger expressed.

Comparable expression levels were detected for PDGFRb. The

known SMC markers ACTA2, TAGLN, HAPLN, CNN1, CD146,

RGS5, thrombospondin 1 (THSP1), MYH11 and desmin (not shown)

were found to be stronger expressed in SMC as compared to VW-

MPSCs. We then investigated the expression of SMC markers in our

VW-MPSCs under different culture conditions in order to analyse

their putative differentiation into SMC. Therefore, VW-MPSCs were

incubated in NGM supplemented with indicated alone or in

combination for 14 days. Total RNA of these VW-MPSCs was used

Figure 2. Co-localisation of MSC marker proteins in CD44+ cells within the hITA wall. Double-immunostainings of hITA sections using
antibodies against typical MSC maker proteins and CD44 demonstrate that CD44+ cells within vasculogenic zone closed to tunica media (emphasised
by dashed line) are also positive for aSMA (A–C), CD90 (D–F), and nestin (G–I), but they are negative for endothelial and hematopoietic progenitor cell
marker CD34 (J–K), and lack also CD146 expression (L). Single CD44+ cells within that zone express NG2 (N–O) and these cells migrate into the outside
of the vessel wall when performing ring assay studies (P–R; blue, TOTOH-3 iodide).
doi:10.1371/journal.pone.0020540.g002
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Figure 3. Improved purification and characterisation of vascular wall-derived MPSCs. (A) FACS analysis on MPSCs isolated from hITA wall
and selected by MACS using CD44 monoclonal antibody show that they are positive for CD90, CD73, CD105, CD44, Stro1 and CD29 but negative for
lineage cell markers CD45, CD68, CD11b, CD19, SMC markers CD146 and PDGFRb and endothelial cell markers CD34, KDR and CD31 indicating no

Vascular Wall-Resident MPSC-Derived SMC
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to determine the expression levels of aSMA/ACTA2, TAGLN and

THSP1 by QRT-PCR (Figure 6C). Exogenous TGFb1 treatment

resulted in an increased expression of the SMC genes TAGLN,

THSP1 and HAPLN (not shown) in cultured VW-MPSCs. Western

blot analysis confirmed an increase of TAGLN upon TGFb1

treatment and also of aSMA (Figure 6D). When VW-MPSCs were

cultured together with HUVEC und subjected for the same treatment

an even higher expression of TAGLN was observed (Figure S7).

Contribution of VW-MPSCs to new vessel morphogenesis
in vivo

Finally, we studied the contribution of VW-MPSCs to morphogen-

esis of functioning blood vessels in vivo using a co-xenotransplantation of

VW-MPSCs/HUVEC as spheroids in Matrigel which were implanted

subcutaneously into Scid mice with addition of selective angiogenic

cytokines (Figure 7). After 14 days Matrigel plugs were isolated and

subjected for immunohistochemistry for human-selective CD34

considerable contamination by other types of progenitors. FACS data representative for at least 3 independent experiments with similar results are
shown. (B) Cultivated vascular wall-derived CD44+ cells show flattened and fibroblast-like morphology and form clonally cell aggregates upon
prolonged culturing (CFU, colony forming units). Bar 50 mm. Immunofluorescent analysis on cultivated CD44+ MPSCs shows that they are also
positive for RGS5 (green) and express stem cell marker Sox2 (green) and Oct4 (red) using confocal microscopy (blue, TOTOH-3 iodide). Bar, 15 mm.
doi:10.1371/journal.pone.0020540.g003

Figure 4. Exogenous TGFb1 reduces in-gel sprouting of cultured vascular wall-derived MPSCs. Vascular wall-derived MPSCs were
embedded in GFR-Matrigel as 3D-spheroids and exposed to normal growth media (NGM), supernatant of the tumor cell lines PC3 and A549 and
indicated factors. (A) VW-MPSCs in-gel sprouting and Matrigel invasion was observed by phase contrast microscopy, and (B) quantified after 48 hours
of stimulation as shown in the diagram. Application of PC3 and A549 supernatant and FGF2 increases the capacity of cell invasion in the Matrigel
while the presence of TGFß1 alone or in combination with indicated factors suppresses it. The data represent the mean cumulative length of all cord-
like sprouts growing from 10 individual spheroids per experimental group. The figure shows the results from 1 of 4 independent experiments with
similar results. *, p,0.05; **, p#0.005.
doi:10.1371/journal.pone.0020540.g004
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Figure 5. Pericyte-like coverage of endothelial tube-like structures by vascular wall-derived MPSCs in vitro. Isolated vascular wall-
derived MPSCs (labelled red) are cultured alone or together with HUVEC (human umbilical cord endothelial cells; labelled green) on Matrigel. VW-
MPSCs alone form cord-like structures (A) but VW-MPSCs together with HUVEC (B–I) form more prominent network suggesting capillary-like
structures in phase contrast microscopy (B). Confocal microscopy analysis after 5–7 hours (C) and after 5 days (D–I) shows a tight association of VW-
MPSCs to the capillary-like EC (D). Under additional application of VEGF-A (10 ng/ml) HUVEC form prominent capillary-like structures (green) which
are covered by VW-MPSCs (red) (E–I). Higher magnification of these structures reveals a pericyte-like assembly (arrows) of VW-MPSCs to the tube like
structures (F–I). Tight association of VW-MPSCs to the capillary-like EC can nicely be seen by combining fluorescence and phase contrast microscopy
(H, I). Photographs representative for at least 3 independent experiments with similar results are shown. Bar A–C 50 mm; D,E, 100 mm, F–H15 mm, I
5 mm.
doi:10.1371/journal.pone.0020540.g005
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(hCD34), aSMA and TAGLN. Within the plugs the formation of new

blood vessels was demonstrated by phase contrast microscopy and by

vessels lined by HUVEC as shown by hCD34 staining (Figure 7A–C).

Co-staining for aSMA shows that aSMA+ cells are closely associated to

these vessels and they achieve a more flattened and elongated

phenotype indicating the potential differentiation of co-implanted VW-

MPSCs into SMC. The results were confirmed by double staining for

hCD34 and TAGLN (Figure 7G,H) showing a close association of

TAGLN+ cells to the new vessels visualized by hCD34+ HUVEC.

Strongest vascularization of plug tissue was observed when VW-

MPSCs and HUVEC together were grafted in Matrigel and stimulated

by combined application of VEGF and FGF-2 or TGFb1 alone

(Figure S9C). Beside flattened TAGLN+ cells with long processes

which are tightly integrated into the vessel wall as pericytes/SMC we

found rounded cells with big and rounded nuclei in close vicinity to the

vessels formed by HUVEC which were either negative or stained only

weakly for TAGLN (Figure 7G,S8A). They probably represent less or

non-differentiated VW-MPSCs. Furthermore, even within plug areas

where VW-MPSCs were not directly associated to HUVEC a strong

TAGLN staining could be detected in flattened and elongated cells

indicating their potential differentiation into SMC whereas undiffer-

entiated or less differentiated VW-MPSCs exhibited weak TAGLN

staining (Figure 7H). TAGLN-immunoreactivity was used in order to

quantify the extent of pericytes and SMC differentiation (Figure S9).

When VW-MPSCs were grafted together with HUVEC and

stimulated by combined application of VEGF and FGF-2 71%619

of all the cells within the plug differentiated into pericytes/SMC,

respectively and 70%616 when TGFß was used. When VW-MPSCs

were grafted alone and stimulated with TGFß 63%616 of all the cells

were differentiated into pericytes/SMC. Only a low amount of

differentiation (15%69) was observed within the plugs when VW-

MPSCs were implanted without the addition of growth factors. Since

no antibody was available recognizing specifically the human SMC or

VW-MPSCs we used direct fluorescent labeling of VW-MPSCs via

transfection for EGFP. EGFP-labeled VW-MPSCs were then

implanted into SCID mice together with HUVEC as described above

in order to directly follow their differentiation into pericytes/SMC and

integration into the vessel wall. These analyses showed a tightly

assembling of EGFP-positive VW-MPSCs to new vessels within

Matrigel in pericyte-like manner (Figure 7E,F,I). TAGLN immuno-

staining demonstrated the co-localization of TAGLN and EGFP

fluorescence identifying the EGFP labeled VW-MPSCs as the source

of the pericyte/SMC-like cells surrounding the vessels (Figure 7I, S8C).

In addition, staining for the pericytes and SMC makers RGS5, aSMA,

and CD146 and co-localisation of EGFP-fluorescence confirmed that

the EGFP-labeled VW-MPSCs are the source of the pericytes and

Figure 6. Differential expressions of marker genes in vascular wall-derived MPSCs versus SMC. (A) QRT-PCR analyses show that genes
specific for SMC such as alpha smooth muscle actin (aSMA, ACTA2), TAGLN1 (transgelin), THSP1 (Thrombospondin 1), MYOC (myocardin) and HPLN1
hyaluronan and proteoglycan link protein 1 are expressed significantly higher in hAoSMC (human aortic smooth muscle cells) in comparison to MSCs
while PDGFRa (platelet-derived growth factor a) and NG2 are expressed stronger in vascular wall-derived MPSCs (A–B). Stimulation of VW-MPSCs with
VEGF165, PDGF-BB, FGF2 (10 ng/ml), TGFb1 (5 ng/ml) alone or in indicated combinations for 14 days shows an up-regulation of SMC markers TAGLN
and THSP1 as compared to VW-MPSCs cultured in normal growth media (NGM) (C). Resulting expression levels were normalized by division through
the mean expression value of the reference gene (b-actin). Data are presented as mean 6 SD from four independent experiments measured at least
two times each. *, p,0.05; **, p#0.005. The stimulation of VW-MPSCs by TGFß1 alone or in combination VEGF and PDGF also increases the protein
level of SMC markers aSMA and TAGLN as shown by immunoblotting (D). Total cell lysates were generated by scraping cells in ice-cold RIPA buffer.
Equal protein amounts were subjected for SDS-PAGE. TAGLN was detected by Western blot using chemiluminescence. b-actin was included as a
loading control. Data representative for at least 3 independent experiments with similar results are shown.
doi:10.1371/journal.pone.0020540.g006
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SMC-like cells surrounding the new vessels (Figure S8C–F). Finally,

electron microscopic analyses of plugs showed capillaries with regular

assembly of pericytes (Figure 7J) which apparently are connected to the

blood perfusion as recognizable from presence of erythrocytes in plug

vessels. Early immature vessels formed only by EC (Figure 7K) as

identified by presence of Weibel-Pallade bodies were found frequently

accompanied by single cell groups with contractile filaments in the

cytoplasm indicating SMC as shown by higher magnification

(Figure 7L). Furthermore, still roundly shaped cells, probably

corresponding to undifferentiated or less differentiated VW-MPSCs

were found within the plug.

Discussion

Here, we show for the first time that CD44+ VW-MPSCs

exhibiting major characteristics of MSCs predominantly reside in

the so-called vasculogenic zone of vascular adventitia and give rise

to generation of pericytes/SMC which in turn are assembled to

Figure 7. Contribution of vascular wall-derived MPSCs to new vessel formation in vivo. VW-MPSCs and HUVEC were grafted into Scid mice
subcutaneously for 14 days as spheroids in Matrigel supplemented with growth factors. Immunofluorescent analysis of isolated plug tissues was
performed. Double-staining for hCD34 (green) and aSMA (red) shows a close assembly of aSMA+ cells to the vessel wall formed by HUVEC (A,
C).Functionally perfused blood vessels within the plugs are identified by presence of erythrocytes within the vessel lumen as detected by phase
contrast microscopy (B, arrow). The specificity of hCD34 was demonstrated by its absence in blood vessels of normal mouse fatty tissue (D).
Furthermore, double stainings for hCD34 (red) and TAGLN (green) (E–I) show flattened TAGLN+ positive cells in tight association to vessels formed by
implanted HUVEC within the plugs (E–G). Intensive vascularisation of plugs is also seen when VW-MPSCs/HUVEC are grafted in Matrigel together with
VEGF and FGF2 (A–F, I) as well as TGFb1 alone (G, H). Cells strongly positive for TAGLN surround tightly the vessels formed by HUVEC (G, arrowheads)
while also some single roundly shaped and TAGLN negative cells (arrow) are present (G, arrow). Few flattened and TAGLN+ cells (arrowhead) which
are not assembled to new vessels are found in Matrigel indicating the presence of SMC, while some rounded cells (arrowheads) are only weak
positive for TAGLN which probably represent still differentiating MPSCs (H). EGFP-labeling of VW-MPSCs shows co-localization of TAGLN (red) and
EGFP fluorescence identifying the EGFP-labeled VW-MPSCs as the source of the pericytes and SMC-like cells surrounding the vessels (blue, TOTOH-3
iodide) (I). Bar A, C 20 mm; E, H, I 10 mm; B, F, G 5 mm. Electron microscopic analysis demonstrates a capillary with endothelial cells (EC) and regularly
assembled pericytes (PC) covering endothelial cells. The presence of erythrocytes (Ery) within the capillary lumen indicates the connection of this
capillary to the blood perfusion (J). In some areas immature vessels are seen as observed by EC morphology and absence of pericytes in the vessel
wall (K). Also single cells or small cell clusters with contractile filaments in the cytoplasm are found indicating the presence of SMC, probably
generated from the implanted SMCs as shown by higher magnification (L).
doi:10.1371/journal.pone.0020540.g007
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the wall of new vessels. Studies performed during the last five years

showed that not only embryonic and fetal aortas but also adult

human blood vessels harbour EPCs and hematopoietic stem cells

(HPCs) in their walls [6,8,23,24]. Supporting these findings,

recently the presence of Sca1+ cells in murine vascular adventitia

was shown which differentiated into SMC in vitro [25]. More

recently, it was shown that a subset of CD34+ vascular wall-

resident progenitors with clonogenic and proangiogenic potential

act as paracrine stimulants for vascular SMC [20]. Within that

publication Campagnolo et al. have shown that a subtype of

CD34+ cells from the vasculogenic zone of human saphena veins

became negative for CD34 under certain in vitro culture

conditions and were found to be positive for several MSC markers

(saphena vein-derived progenitor cells, SVPs). In a model of

ischemia these cells were shown to act as perivascular support cells,

most likely to be pericytes [20]. However, the author did not

perform co-localisation studies for SVP and SMC marker proteins

after transplantation, which were necessary in order to clearly

demonstrate the pericyte/SMC differentiation of those cells. We

hypothesized the existence of mesenchymal vascular wall-resident

stem cells with the capacity to differentiate into pericytes/SMC.

Here we use a single marker, CD44 to isolate this VW-MPSC.

These cells lack CD34 expression in situ as well as upon culturing.

We suggest that our CD44+ VW-MPSCs represent a different

type of multipotent adventitial cells of adult vessels wall as

compared to CD34+ SVP cells. Finally, it cannot be totally

excluded that CD44+ VW-MPSCs can achieve characteristics of

CD34+ SVP upon differentiation processes in situ or in vitro

under certain circumstances not studied here.

The vascular adventitia acts as biological processing centre for

release of key regulators of vessel wall function and in response to

stress, atherosclerotic plaques [6,10] or injury resident adventitial

stem and progenitor cells [23] can be activated and specified to

exhibit different functional and structural behaviours [24,26]. We

used several markers in our analyses. Only CD44 resulted in

identifying of cells which were present exclusively within the

vasculogenic zone. CD44+ cells isolated from freshly prepared

hITA fragments exhibit a profile of cell surface markers which is

characteristic for MSCs. Since these cells did not express CD146

and PDGFRb they could be distinguished from vascular SMC.

Together with their capability to adhere on plastic and to

differentiate along the mesodermal lineage vascular wall-resident

CD44+ cells exhibit properties of multipotent stem cells, as they

fulfil all the criteria defined by The International Society for

Cellular Therapy [27]. Thus, they were named as vascular wall-

resident multipotent stem cells.

Already in 1998 Andreeva et al. [28] demonstrated the presence

of cells expressing the pericyte marker 3G5 in the subendothelial

space and the outer layer of the tunica media. Furthermore, they

found a continuous subendothelial network of pericyte-like cells in

human vascular bed. Consistent with these findings multipotent

MSCs from subendothelial space of saphenous veins were isolated

that differentiated into osteoblasts, chondrocytes and adipocytes in

vitro [29]. We already postulated the potential presence of MSCs

within the adventitial vasculogenic zone as we identified this zone

as a niche for EPCs and HPCs [8]. Supporting this hypothesis, in

recent report angiogenic mesenchymal stromal cells were obtained

from thoracic aortas of multiorgan donors with the ability to

differentiate into EC in vitro [11]. Furthermore, it was

hypothesized that MSCs were situated throughout the body as

pericytes. They are in physical contacts with EC via gap junctions

and express at least one marker attributed to pericytes but not pan-

endothelial markers [19]. Once these cells are liberated from the

endothelial layer the authors suggest to reconsider them as MSCs.

Based on our data we suggest reconsidering the ‘‘MSCs’’ from the

subendothelial space to be pericytes as they fulfil all the criteria,

especially due to their close contact to EC and basal lamina of the

capillary wall. Conclusively VW-MPSCs derived from the

vasculogenic zone fulfil all criteria of MSCs and in contrast to

the pericytes they do not need a retransformation process to

achieve a stem cell-like behaviour. Herein, lack of CD146

expression in our VW-MPSC might represent a special feature

of VW-MPSCs derived from the vasculogenic zone as compared

to pericytes. Studying the well known MSC marker and their

expression profiles in VW-MPSCs as compared to SMC we show

here that expression patterns highly overlap and this might

indicate that there is an urgent need in identifying additional cells

type specific markers. Moreover, using hITA tissue sections and

performing arterial ring assays we show here that CD44+ VW-

MPSCs are mobilised from the adventitia, migrate outside the

vessel wall and cover the endothelial capillary-like outgrowth.

Several groups have suggested the use of MSCs derived from

BM, adipose tissue and embryonic stem cells to generate SMC

[30–32]. Increasing awareness points out that association of EC

with pericytes/SMC is critical for the proper vascular develop-

ment, stabilization and maintenance [33–35]. Several studies have

suggested that pericytes and SMC may play a central role in tumor

angiogenesis and determine the success of anti-angiogenic

therapies. Thus, a great interest in identifying pericytes in tumor

tissue specimens has developed [36]. On the other hand vascular

stabilization is crucial for new vessels to survive and to achieve

functional properties needed for an adequate perfusion by blood

according to the tissue demands. Our data show that CD44+ VW-

MPSCs are capable to differentiate into TAGLN+ cells which

contain contractile filaments in electron microscopic analyses and

cover the in vitro formed endothelial tube-like structures in a

pericyte-like manner. While pericytes have mostly been attributed

to be involved in relatively late events during neovascularisation

such as vessel stabilization, permeability barrier formation and

blood flow regulation, pericytes also have been shown to be

present during the initial stages of microvessel formation and may

even be involved in initiating of microvascular development [37–

39]. Accordingly, the relationship between pericytes and EC

determines the entire life of microvessels. In line with this

hypothesis the early presence of pericytes in vascularising tissues

and the ability of these cells to form pericyte networks in the

absence of EC have been reported [40].

VW-MPSCs contribute to in vivo vessel morphogenesis as we

show here by co-implantation of VW-MPSCs and HUVEC in

Matrigel plug assay. Within the plugs implanted HUVEC formed

blood perfused vessels as shown by presence of erythrocytes within

the vessel lumen and hCD34-staining. Co-implanted VW-MPSCs

were differentiated into SMC/pericytes and assembled then to the

new vessels as shown here by using EGFP-labeled VW-MPSCs.

Immunofluorescence analysis of different SMC/pericyte markers

undoubtedly confirmed that CD44+ VW-MPSCs have the capability

to differentiate into pericyte/SMC and contribute to morphogenesis

of new vessels under in vivo conditions. Finally, our electron

microscopic studies show at the ultra structural level that these cells

are not only assembled to new capillaries but they are regularly

integrated into the wall of new capillaries e.g. EC and pericytes are

enclosed by the same basal lamina. Moreover, our present findings

show that isolated CD44+ MPSCs exposed to exogenous TGFb1

during culturing exhibit alteration in gene expressing profile by

significantly increased expression of the SMC markers TAGLN,

HAPLN and THSP1. These factors have been shown to play an

essential role in differentiation and proliferation of SMCs [32,41],

vascular morphogenesis [42], and maintenance [41,42]. TAGLN is
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expressed exclusively in smooth muscle-containing tissues of adult

mammals and is one of the earliest markers of differentiating SMC.

However, the reliance on aSMA (ACTA2) expression as a sole

criterion for differentiation of a stem or progenitor cell into SMCs is

critical and can lead to the false conclusion that the stem cell type

being studied has the capacity to produce functional SMCs.

Accordingly, our microarray studies revealed that several genes are

differentially expressed in vascular wall-derived MSCs in comparison

to SMC and TAGLN, ACTA2, THSP1, HAPLN and MYOG are

some of the most up-regulated genes in SMCs (unpublished data).

Combining the expression pattern of well known MSCs and SMC

markers, we were able to analyze the effect of different growth factors

on VW-MPSC differentiation into SMC. The increased protein

levels of TAGLN and aSMA of cultivated VW-MPSCs stimulated

with TGFß1 demonstrate that VW-MPSCs achieve SMC-like

pattern. Further studies will be needed in order to better characterize

the pathway of TGFb1-induced SMC differentiation of VW-MPSCs.

Conclusion
Taken together, our results demonstrate that human vessels

harbour not only EPCs but also other types of stem cells as shown

here for VW-MPSCs which are capable to differentiate into SMC.

Our extensive morphogenetic studies and functional analyses

identify vascular MPSCs residing predominantly in the vasculo-

genic zone of adult human blood vessels and provide new

mechanistic insights into their potential to differentiate into SMC

and assemble to the wall of new vessels. Localized within the

vascular adventitia which serves as an interface between the inner

parts of vessel wall inclusively blood flow and the surrounding

tissue the VW-MPSCs might serve an important therapeutic

target. On the other hand, the therapeutic potential of these cells

in ischemic disorders and tissue vascularisation as well as in tissue

engineering and regeneration is self-evident but needs further

studies. Hypothetically, VW-MPSCs can be mobilized from

adventitia to the media and differentiate to SMC in cases of

injury or damage of the arterial wall cells in order to replace them.

Also the cells might contribute to vessel remodeling during

embryonic and fetal development. Finally, it is conceivable that

the adventitial CD44+ cells contribute to the stabilization of vasa

vasorum, an important system of the wall of large and middle sized

arteries for the own blood supply.

Supporting Information

Figure S1 Arterial sprouting assay in Matrigel using
fragments of hITA. The capillary-like sprouts from aortic wall

demonstrate cellular components (arrows) tightly associated to the

vessel sprout from the outside (A). Immunohistochemistry for

aSMA on sections from such sprouting tissue shows aSMA-

positive (arrows) cells covering the capillary-like structure (red

staining) visualized by counterstaining via Calcium red (B).

(TIF)

Figure S2 Control stainings of hITA sections for immu-
nofluorescent analysis. In immunofluorescent analysis for

CD44+ cells in their native niche we performed double

immunostainings on hITA sections combining antibodies against

RGS5 (rabbit IgG) and mouse isotype control (A), against CD44

(mouse IgG) and rabbit isotype control (B), as well as mouse and

rabbit isotype controls (blue, TOTOH-3 iodide). Dotted line marks

the border between media and adventitia of the hITA wall.

(TIF)

Figure S3 Expression of pluripotent stem cell marker
genes in vascular wall-derived MPSCs vs. embryonic

stem (ES) cells. QRT-PCR analyses show that genes specific for

pluripotent ES (blue bars) cells are partially expressed in VW-

MPSCs (grey bars) (Sox2 and to a lower extent Oct4). Y-axis is

presented in logarithmic scale. Data are presented as mean 6 SD

from three independent experiments measured at least two times

each.

(TIF)

Figure S4 In vitro differentiation of cultured vascular
wall-derived CD44+ MPSC. (A) Cultivated vascular wall-

derived CD44+ MPSCs differentiate into adipocytes (Oil red),

chondrocytes Coll II) and into osteocytes (ALP) within 14 days

after induction of differentiation as shown by Oil red staining, by

immunostaining for collagen type II (Coll II) and by histochemical

staining for alkaline phosphatase (ALP) as well as the von Kossa

staining to visualise mineralised calcium (upper figure panel). No

specific staining is seen in the corresponding controls (lower figure

panel). Magnification 620. (B) Cultured CD44+ MPSC were

clonally expanded by plating primary cell isolates in 96-well cell

culture plastic dishes (1 cell per well) as previously described by

Chen et al. [R1]. Developed clones were subsequently subjected to

obtain a single cell suspension by accutase treatment and re-plated

in 96-well plastic dishes (1 cell per well) in order to generate

subclones (sc). Different sub-clones (differentiation I, II) differen-

tiate into adipocytes (Oil red staining), into osteocytes (ALP

staining) and into chondrocytes (Coll II staining) within 14 days

after induction of differentiation. Magnification 620. [R1] Chen

FG, Zhang WJ, Bi D, Liu W, Wei X, Chen FF, Zhu L, Cui L, Cao

Y. Clonal analysis of nestin(2) vimentin(+) multipotent fibroblasts

isolated from human dermis. J Cell Sci. 2007 Aug 15;120(Pt

16):2875–83.

(TIF)

Figure S5 Exogenous TGFb1 reduces in-gel sprouting
and increases cell number of cultured vascular wall-
derived MPSCs. (A) VW-derived MPSCs alone (blue bars) or

together with endothelial cells (purple bars; ratio 1:1) were

embedded in GFR-Matrigel as 3D-spheroids and exposed to

NGM, TGFb1 (5 ng/ml) or TGFb1 and TGFb1 neutralizing

antibody (2 mg/ml). In-gel sprouting was quantified after 48 hours

of stimulation. The data represent the mean cumulative length of

all cord-like sprouts growing from 10 individual spheroids per

experimental group. The figure shows the results of 1 of 2

independent experiments with similar results. (B) VW-MPSCs

cultured in NGM supplemented with VEGF165, PDGF-BB,

FGF2 (10 ng/ml) and TGFb1 (5 ng/ml) as well as in control and

conditioned media of tumor cell lines A549 (A549-SN) or PC3

(PC3-SN) for 14 days show increased cell numbers in response to

TGFß alone or in the indicated combinations. Data are presented

as mean 6 SD from 3 independent experiments performed in

duplicates each. ** p#0.005.

(TIF)

Figure S6 Pericyte-like coverage of endothelial tubes by
vascular wall-derived MPSCs in an angiogenic sprouting
assay. Pre-labelled VW-MPSCs (green) were seeded together

with pre-labelled HUVEC as spheroids (red; ratio 1:1) in GFR-

Matrigel. Capillary-like tube formation was observed within

MPSCs/HUVEC after 48 h of culturing. Confocal microscopic

analysis was done (A, B1). Bar A3 100 mm, A4 20 mm. Vascular

wall-derived MPSCs tightly associate to the tubes formed by

HUVEC and wrap them in a pericyte-like manner after prolonged

co-culturing (B). Bar 10 mm. Cross-sectioning of samples was

followed by a HE-staining in order to demonstrate lumen

formation within the capillary tube formation (C, D). Bar10 mm.

(TIF)
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Figure S7 QRT-PCR analyses of vascular wall-derived
MPSCs differentiation into SMC upon co-culturing with
HUVEC. VW-MPSCs were cultured together with HUVEC

(ratio 1:1) in normal growth media (NGM) or supplemented with

VEGF165, PDGF-BB, FGF2 (10 ng/ml), TGFb1 (5 ng/ml) alone

or in indicated combinations. After 14 days cells were trypsinised

and subjected for MACS sorting. HUVEC cells were depleted via

immunomagnetic beads using CD34 and CD31 antibodies. Total

RNA was harvested from VW-MPSCs extracts and subjected for

QRT-PCR analysis of TAGLN, HAPLN and CNN1 expression.

Resulting expression levels were normalized by division through

the mean expression value of the reference gene (b-actin). Data are

presented as mean 6 SD from two independent experiments

measured at least two times each.

(TIF)

Figure S8 Contribution of VW-MPSCs to new vessel
formation in vivo. (A, B) TAGLN (red) and hCD34 (green)

double-staining shows flattened cells strongly positive for TAGLN

(arrowheads) surrounding tightly the vessels formed by HUVEC

while also some single roundly shaped and TAGLN-negative cells

(arrow) are present probably still representing differentiating

MPSCs. Within the plugs the formation of functional new blood

vessels was demonstrated by phase contrast microscopy and the

presence of erythrocytes within the vessel lumen (B4, C2). (C–F)

EGFP-labeling of VW-MPSCs was used in order to follow directly

their differentiation into pericytes/SMC and their integration into

the wall of new vessels. EGFP labelled VW-MPSCs and HUVEC

were grafted as spheroids in Matrigel supplemented with VEGF

and FGF2 into Scid mice subcutaneously for 14 days. On sections

of removed plug tissue immunofluorescent studies and confocal

microscopic analyses were performed. Staining for pericytes/

smooth muscle cell makers (C TAGLN; D aSMA; E CD146; F

RGS5) and co-localisation of EGFP-fluorescence identified the

EGFP-labeled VW-MPSCs as the source of the pericytes and

SMC-like cells surrounding the vessels (blue, TOTOH-3 iodide).

Bar A, C 20 mm; B, D–F 10 mm.

(TIF)

Figure S9 Pericyte/smooth muscle cell differentiation
of VW-MPSC. VW-MPSCs were grafted with HUVEC (A, C) as

spheroids or alone (B) in Matrigel supplemented with VEGF and

FGF2 (A) or TGFß (B) or indicated growth factors (C) into Scid

mice subcutaneously for 14 days. On sections of removed plug

tissue immunostainings using the TAGLN antibody (brown, DAB

staining; hCD34 red, ALP) were performed. TAGLN-positive cells

were quantified by counting four randomly chosen optical fields

using light microscopy. When VW-MPSCs were grafted together

with HUVEC 70%616 (TGFß; n = 4) and 71%619 (VEGF/

FGF2; n = 2) of all the cells within the plug differentiated into

pericytes/smooth muscle cells, and 63%616 were differentiated

when MPSCs were grafted alone (C6). Magnification 620.

(TIF)

Table S1 Oligonucleotides used for QRT-PCR. Specific

primers were synthesized based on available sequences for each

listened gene. Primer design was done with the program Primer 3

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). Cross-

reaction of primers with the genes was excluded by comparison of the

sequence of interest with a database (Blast 2.2, U.S. National Centre

for Biotechnology Information, Bethesda, MD, USA) and all primers

used in our study were intron-spanning. PCR products are 300–

400 bp in size.

(DOC)
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