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T-pro are tumor-infiltrating TCRabþCD8þ cells of reduced cytotoxic potential that promote experimental two-
stage chemical cutaneous carcinogenesis. Toward understanding their mechanism of action, this study uses whole-
genome expression analysis to compare T-pro with systemic CD8þ T cells from multiple groups of tumor-bearing
mice. T-pro show an overt T helper 17–like profile (high retinoic acid–related orphan receptor-(ROR)gt, IL-17A, IL-
17F; low T-bet and eomesodermin), regulatory potential (high FoxP3, IL-10, Tim-3), and transcripts encoding
epithelial growth factors (amphiregulin, Gro-1, Gro-2). Tricolor flow cytometry subsequently confirmed the
presence of TCRbþ CD8þ IL-17þ T cells among tumor-infiltrating lymphocytes (TILs). Moreover, a time-course
analysis of independent TIL isolates from papillomas versus carcinomas exposed a clear association of the ‘‘T-pro
phenotype’’ with malignant progression. This molecular characterization of T-pro builds a foundation for
elucidating the contributions of inflammation to cutaneous carcinogenesis, and may provide useful biomarkers for
cancer immunotherapy in which the widely advocated use of tumor-specific CD8þ cytolytic T cells should perhaps
accommodate the cells’ potential corruption toward the T-pro phenotype. The data are also likely germane to
psoriasis, in which the epidermis may be infiltrated by CD8þ IL-17-producing T cells.
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INTRODUCTION
The capacity of CD8þ cytolytic T cells (CTLs) to lyse malignant
cells showing tumor-associated antigenic peptides on surface
major histocompatibility complex-I underpins a major
immunotherapeutic emphasis on CD8þ T-cell stimulation
(see Finn, 2008). Indeed, several human tumors, including
colon and ovarian carcinoma, show an association of
improved prognosis with the degree of CD8þ tumor-

infiltrating lymphocyte (TIL) (Galon et al., 2006; Tomsová
et al., 2008). However, tumor-specific CTL-based immuno-
therapy has met with limited success, an outcome attributed
to several opposing immunologic forces, including CD4+

T-regulatory (T-reg) cells, tumor-associated macrophages
(TAM) (Allavena et al., 2008), and other systemic and local
immunosuppressive mechanisms (Quezada et al., 2008); and
the concomitant stimulation of tissue hyperproliferation and
oxidative reactive species fostered by inflammatory cells
(Coussens and Werb, 2002). Nonetheless, little attention has
been paid to the potential of CD8þ T cells themselves to
enhance tumor growth.

Using a well-established two-stage model of chemical
carcinogenesis, which provokes the development of cutaneous
papillomas followed by variable progression to squamous cell
carcinomas (Hennings et al., 1981), we earlier identified a
previously unknown TCRabþCD8þ tumor-promoting T-cell
(T-pro) subset that has reduced cytolytic potential and
substantially enhances carcinogenesis (Roberts et al., 2007).
T-pro compose the first CD8þ T-cell subset specifically
associated with tumor promotion, joining CD4þ T-reg as a
focus of biological and clinical interest in the immunopatho-
genesis of cancer progression.

The functional phenotypes of several T-cell subsets are
largely dependent on the distinctive activities of several
transcription factors, for example, T-bet, transcription factor
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GATA binding protein-3 (GATA-3), FoxP3, and retinoic
acid–related orphan receptor-(ROR)gt that promote the
differentiation of CD4þ T cells into T helper (TH)1, TH2,
T-reg, and TH17 cells, respectively. Several investigators
have suggested that TH17 cells might be further subdivided
into ‘‘effector TH17’’ cells that primarily produce IL-17, and
‘‘regulatory TH17’’ cells that also express FoxP3 and produce
the immunosuppressive cytokine, IL-10 (Lochner et al., 2008;
McGeachy and Cua, 2008). As the TH1 and TH17 pathways
may both be proinflammatory, and because epidemiological
data clearly identify inflammation as a predisposing factor for
carcinogenesis (Swann et al., 2008), we hypothesized that T-
pro may represent a CD8þ counterpart of a TH1 or a TH17
response. In this regard, it was recently shown that T-bet
directs CD8þ T-cell differentiation into perforin-producing
CTLs only when there is concomitant expression of high
levels of the related transcription factor eomesodermin
(Eomes) (Intlekofer et al., 2008). This joint requirement for
T-bet and Eomes was elucidated during lymphocytic chor-
iomeningitis virus challenge in which instead of providing
cytolytic responses, CD8þ T cells deficient in both factors
adopted an alternative, proinflammatory phenotype with
striking similarities to CD4þ TH17 cells. Recently, CD8þ IL-
17-producing T cells have been identified in additional
contexts, including psoriasis (Kryczek et al., 2006) and in
several experimental and human tumors (Kryczek et al.,
2007). Thus, it is possible that the milieu of skin inflammation
and/or malignancy may dramatically influence CD8þ T-cell
differentiation and effector function away from cytotoxicity
and toward TH17-like properties.

To test whether the reduced cytolytic potential of CD8þ

T-pro is associated with a TH17-like phenotype, we
subjected the cells to whole-genome expression analyses,
quantitative reverse transcriptase-PCR, and flow cytometry.
The results show that relative to systemic CD8þ T cells, T-pro
are substantially enriched in signatures of regulatory TH17
cells, associated with which they show deficient expression
of both T-bet and Eomes. Moreover, T-pro express several
epidermal growth factors, including amphiregulin. In addi-
tion to providing insight into T-pro cells, the expression
profile identified a marker panel for the development of the
T-pro phenotype, which we show to correlate with tumor
progression. Such may similarly serve as a biomarker for the
potential phenotypic corruption of CD8þ CTLs administered
in immunotherapeutic regimens.

RESULTS
Carcinogen dose effects on CD8þ T-pro

Previous application of two-stage chemical carcinogenesis at
different doses to relevant gene knockout mice, coupled with
adoptive transfer studies, has collectively shown that
TCRgdþ cells predominantly oppose tumor initiation,
whereas the effects of the TCRabþ T-cell compartment are
mixed: CD4þabþ cells harbor an immunoprotective com-
ponent, whereas CD8þabþ cells include T-pro (Girardi
et al., 2001; Roberts et al., 2007; Strid et al., 2008). To
determine whether the effects of CD8þ T-pro increase with
carcinogen exposure, we compared tumor growth under both

low-dose and high-dose 7,12-dimethylbenz[a]anthracene
(DMBA)/12-O-tetradecanoylphorbol 13-acetate(TPA) proto-
cols in wild-type (wt) and CD4�/� mice (that each harbor
CD8þTCRabþ cells) and in TCRb�/� mice (that do not
harbor CD8þTCRabþ cells). At low dose, CD4�/� mice
showed significantly higher tumor susceptibility than did wt
mice (Figure 1a and b), consistent with the absence of tumor-
inhibitory CD4þ T cells from these mice (Girardi et al.,
2003). However, the reduced tumorigenesis in the TCRb�/�

strain emphasizes the tumor-promoting effects of ab T cells
that were previously attributed to CD8þ T-pro by selective
knockouts and adoptive transfers (Roberts et al., 2007).
Conversely, at 15 weeks post initiation with DMBA, wt and
CD4�/� strains subjected to high-dose protocols both
displayed comparable tumor burdens, 43-fold greater than
TCRb�/� mice (Po0.001) (Figure 1c–e). Thus, as carcinogen
exposure increases, the CD8þ T-pro effect is maximized
relative to any protective effects of CD4þ T cells. Consistent
with this, CD8þ TILs were substantially enriched in the
tumor relative to the stroma (Figure 1f). Therefore, we used
this system as a source of T-pro cells to gain insight into their
potential mechanism of action.

Gene-expression profiles of T-pro

Highly purified (498%) CD44HICD62LLOTCRbþCD8þ

T-cell populations from TIL and the counterpart peripheral
blood lymphocytes (PBLs) of tumor-bearing (Tumþ ) CD4�/�

and wt mice, respectively, were obtained by flow cytometric
sorting, and assessed for their expression of B47,000 genes
by use of Illumina Sentrix bead chips (Illumina, San Diego,
CA). Absolute probe hybridization values were consistent
with high-fidelity purifications; for example, there was no
expression of either CD4 or of signature genes for other skin
populations, notably Langerhans cells and keratinocytes
(Figure 2a). Hierarchical gene-clustering analysis showed
striking concordance between the two TIL populations and
between the two PBL populations. Moreover, the latter pair
was distinct from the TIL and much more similar to
phenotypically equivalent, CD44HICD62LLOTCRbþCD8þ

effector T cells purified from the PBL of naive animals (that
is, those that were not exposed to chemical carcinogens)
(Figure 2b). More specifically, of B800 (B1.7%) genes that
were 410-fold differentially expressed by the populations
sorted from tumor-bearing mice, relative to CD8þ PBL from
naive mice, 724 genes were highly expressed by the CD8þ

TIL, compared with only 25 genes enriched in CD8þ PBL
from Tumþ mice. These data indicate that the genes
underpinning the distinct behavior of CD8þ T cells in Tumþ

mice are to be found in the local tumor site rather than in the
peripheral compartment.

Among the genes 410-fold upregulated in TIL was
RORgt, whereas T-bet and Eomes were between 10- and
100-fold underrepresented in the TIL (Figure 2c). These data
predict a TH17-like differentiation pattern and a suppression
of cytolytic differentiation, consistent with which IL-17A and
IL-17F were within the top 10 most differentially expressed
genes in TIL (Table 1; Figure 2c). In addition, there was strong
upregulation of IL-6 and IL-23R, both of which contribute to
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TH17 differentiation (Langrish et al., 2005; Langowski et al.,
2007). The reduced expression of IL-6R suggests these cells
may have been previously exposed to IL-6.

Moreover, perforin was among the least represented
transcripts in CD8þ TIL, as were RNAs for CTL markers,
such as NKG7. TILs were also enriched in transcripts
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Figure 1. CD8þ T cells infiltrating cutaneous tumors induced by two-stage chemical carcinogenesis are associated with tumor promotion. Tumors

were induced on the dorsal skin of FVB wild-type (wt), CD4�/�, and TCRb�/� mice using low-dose (LD) and high-dose (HD) protocols of two-stage

chemical carcinogenesis. Under both protocols, augmented tumor susceptibility was greatest in CD8-intact (CD4�/�; wt) mice. (a, week 12; b, week 15): At LD,

wt controls produced greater (although not statistically distinguishable) tumor burdens than (TCRb�/�) mice deficient in all TCRabþ T cells, whereas

CD4�/� mice showed significantly higher tumor susceptibility (Po0.002) than TCRb�/� mice. (c, week 12; d, week 15): At HD, tumor burdens were

comparably high in both wt and CD4�/� strains compared with TCRb�/� mice (Po0.001 for wt and Po0.00004 for CD4�/�). Error bars, ±SE. (e) Tumors

that developed under two-stage chemical carcinogenesis were scored as clinically apparent papillomas or carcinomas. Tumor appearance of two

representative mice from each of the wt, CD4�/�, and TCRb�/� cohorts are shown. (f) Immunohistochemistry readily identified CD8þ cells within

tumors (T), but less so in the stroma (S). CD4�/� mouse tumor sections shown; F denotes follicle. Bar¼ 500, 125, and 60mm, respectively.
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for Foxp3 and IL-10, consistent with T-reg and/or regulatory
TH17 differentiation, as well as in transcripts for several
other factors that may regulate effector T cells, including
IL-4-induced gene 1 (IL4i1) and T cell Ig mucin 3 (Tim-3).
Furthermore, the analysis showed a substantial enrichment
in TIL of RNAs encoding epithelial growth factors,
amphiregulin, Gro-1, and Gro-2. Quantitative reverse
transcriptase-PCR (qRT-PCR) analysis of independently sorted

populations of CD8þ TIL and PBL isolated from Tumþ wt
and CD4�/� mice fully validated the Illumina data sets
(Figure 3).

TH17-like differentiation of CD8þ T-pro

The prediction by gene profiling that CD8þ T-pro resemble
TH17 cells was further investigated by the isolation of TCRbþ

TIL and by the analysis of IL-17 expression in five independent
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Figure 2. Illumina expression analysis of CD8þTCRbþCD44HICD62LO TIL and PBL populations. mRNA from highly purified (498%)

CD44HICD62LLOTCRbþCD8þ tumor-infiltrating lymphocyte (TIL) and peripheral blood lymphocyte (PBL) from tumor-bearing (Tumþ ) CD4�/� and Tumþ

wild-type (wt) mice were analyzed by Illumina Sentrix bead chips (B47,000 genes). (a) Absolute probe hybridization values were consistent with high-fidelity

purifications. (b) Relative to the naive PBL, a total of 800 (B1.7%) genes were found to be 410-fold differentially expressed by the TIL and PBL sorts in Tumþ

mice. The vast majority of these (91%) were within the TIL sets. (c) Hierarchical clustering analysis showed that the PBL populations isolated from tumor-bearing

(Tumþ ) mice were similar to phenotypically equivalent (CD44HICD62LLOTCRbþCD8þ ) effector T cells purified from PBL of naive animals. The dendrogram

shows that the primary clusters based on global gene expression differentiate between PBL and TIL, whereas the heatmap (red, high expression; blue, low
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unique to CD8þ T-pro (based on absolute probe values) showed differentiation along the RORgt pathway, poor cytotoxic potential, and production of regulatory

mediators/growth factors.
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experiments. By contrast to CD8þ PBL from either Tumþ or
naive mice, CD8þ TIL produced IL-17A after TCR stimulation
(Figure 4a). Furthermore, the production of IL-17 protein was
shown by a substantially greater fraction of CD8þ TIL, by
comparison with CD4þ TIL (Figure 4c). However, despite the
high transcription expression levels of RORgt and IL-17A, only
a minority of the CD8þ TIL produced IL-17 (mean 6.80%;
n¼ 5), whereas the same stimulation protocol can produce
substantially higher percentages and fluorescent intensities in
other TH17-differentiated populations (Ribot et al., 2009).
Nonetheless, our findings are highly consistent with other
systems that have shown biologically relevant IL17-producing
CD8þ T cells to compose only a minority of the CD8þ

compartment (Hamada et al., 2009; Kondo et al., 2009).

T-pro profile association with malignant progression

The elucidation of a ‘‘T-pro profile’’ permitted us to track the
appearance of T-pro cells. Thus, we examined the expression
of the signature genes in CD8þ TIL isolated from malignant
carcinomas at 16 weeks after DMBA initiation, in CD8þ TIL
isolated at 16 weeks from benign papillomas, and in TIL from
week 12 tumors that are smaller and predominantly
papillomas. The ‘‘T-pro profile’’ was strongly associated with
the CD8þ TIL of malignant tumors (red) than of benign
tumors (blue) (Figure 5). Almost all of the previously
identified differentially expressed genes found in CD8þ TIL
relative to PBL using pooled samples (Figures 2 and 3) were
attributable to TIL present within more advanced carcinomas
(Table 2), whereas only Tim-3 (upregulated) and perforin

Table 1. The 30 most differentially upregulated genes in CD8+ TIL (T-pro)

Gene (aliases) Name
TIL/PBL fold
expression P-value

1 Tff1 (PS2, Bcei) Trefoil factor 1 628 0.0044

2 Cxcl1 (Gro1, KC, Scyb1) Chemokine (C-X-C motif) ligand 1 483 0.0002

3 Cxcl2 (Gro2, MIP-2, Scyb2) Chemokine (C-X-C motif) ligand 2 191 0.0019

4 Ccl17 (TARC, Scya17) Chemokine (C-C motif) ligand 17 157 0.0006

5 Il17f Interleukin 17F 153 0.0016

6 Kit (CD117) C-kit oncogene 95.3 0.0030

7 Scin Scinderin (adseverin) 87.6 0.0030

8 Il17a (Ctla8) Interleukin 17A 79.6 0.0043

9 Pdpn (T1a, Gp38, OTS-8) Podoplanin 72.8 0.0013

10 Anxa3 Annexin A3 64.1 0.0019

11 Tbc1d1 TBC1 domain family, member 1 51.7 0.0008

12 Fam73b Family with sequence similarity 73, member b 49.3 0.0014

13 Il4i1 (Fig1) Interleukin 4 induced 1 48.3 0.0011

14 Basp1 (CAP23) Brain abundant, membrane attached signal protein 1 45.7 0.0020

15 Mt1 Metallothionein 1 45.4 0.0026

16 Cxcl5 (ENA-78, Scyb5) Chemokine (C-X-C motif) ligand 5 44.7 0.0041

17 Cdkn1a (P21, CIP1, Waf1) Cyclin-dependent kinase inhibitor 1A (P21) 44.6 o0.0001

18 Car13 Carbonic anhydrase 13 43.7 0.0045

19 Mmp12 (MMEL) Matrix metallopeptidase 12 41.7 0.0040

20 Ccl2 (MCP-1) Ccl2 chemokine (C-C motif) ligand 2 40.9 0.0053

21 Plek2 Pleckstrin 2 40.6 0.0003

22 Lmna Lamin A/C 39.5 o0.0001

23 Il1b Interleukin 1 beta 39.4 0.0030

24 Sdc4 (Synd4) Syndecan 4 39.3 0.0046

25 Clec4n (dectin-2) C-type lectin domain family 4, member n 36.9 0.0049

26 Areg (Sdgf) Amphiregulin 34.5 0.0029

27 Slpi Secretory leukocyte peptidase inhibitor 33.2 0.0030

28 Il10 (CSIF) Interleukin 10 32.6 0.0018

29 Fam83g Family with sequence similarity 83, member g 31.3 0.0009

30 Pla1a (Pspla1) Phospholipase A1 member A 31.1 o0.0001

Abbreviations: PBL, peripheral blood lymphocyte; TIL, tumor-infiltrating lymphocyte.
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(downregulated) were found to be differentially expressed in
the TIL of benign papillomas. This suggests a panel of
potential biomarkers present within the TIL and specific for
malignant progression.

DISCUSSION
Under high doses of DMBA/TPA, the abþ CD8þ T-cell
compartment appears to be heavily weighted toward tumor
promotion (Roberts et al., 2007), and has offered an
opportunity to gain a previously unidentified insight into
how these cells might facilitate tumor progression, effectively
shifting the immune balance during the critical equilibrium
state (Koebel et al., 2007). The capacity of CD8þ T-pro to
locally enhance malignant progression through several major
mechanisms is elucidated: fostering a proinflammatory tumor
microenvironment, providing specific regulatory activities,
and stimulating epithelial cell proliferation. These data
indicate that the identified CD8þ T-pro transcripts have
immunopathogenic relevance not only to neoplastic growth
but specifically also to the progression to carcinoma. As such,
these experiments add weight to the idea that the full list of
differentially expressed genes will contain other contributors
to malignant transformation, and/or T-cell effector functions
imparted by the tumor microenvironment. Thus, these
genes can serve as a resource for mechanistic studies, and
offer potential targets for cancer prevention and therapy, as
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well as markers of tumor development and immunotherapy
monitoring.

The comparison of our CD8þ T-pro with perforin-
deficient CD8þ T cells that have been identified in various
other settings offers several parallels, yet also provides major
distinctions that suggest that CD8þ T-pro may be unique.
Expression analysis of CD8þ T cells chronically stimulated
by lymphocytic choriomeningitis virus in vivo has shown an
‘‘exhaustion’’ typified by low cytolytic and increased
regulatory potential (Wherry et al., 2007) that somewhat
resembles CD8þ T-pro. Given the important associations
between chronic viral infections and malignant transforma-
tion, the possibility that CD8þ T-pro are manifested as a
direct result of chronic stimulation/exhaustion is an intriguing
idea, supported by the relatively lower levels of CD28 and
natural killer group 2D transcripts in CD8þ T-pro. However,
lymphocytic choriomeningitis virus exhausted CD8þ T cells,
relative to their effector precursors, show higher expression
of Eomes and FasL, and little IL-17, in large measure,

distinguishing these cells from CD8þ T-pro. Liu et al.
(2007) reported that, under the influence of transforming
growth factor-b (TGF-b) and IL-6, CD8þ T cells from naive
mixed lymphocyte cultures show downregulation of T-bet
and upregulation of RORgt transcription factors. These cells
produced IL-17 and showed decreased cytolytic factors. In
addition, Hamada et al. (2009) used TGF-b, IL-6, IL-21,
antibodies to IFNg, and specific peptide-loaded antigen-
presenting cells to generate in vitro IL-17-producing CD8þ T
cells from TCR transgenic (OT-1) naive CD8þ T cells. These
‘‘Tc17’’ cells were notable for their CD44HI CD62LO

phenotype, and showed an expression profile positive for
RORgt and FoxP3, and negative for T-bet.

Kryczek et al. (2007) found that several human tumors
contained CD8þ IL-17-producing cells, and this was echoed
in mouse B16 melanoma tumors in which the greatest
numbers of such cells were associated with more advanced
tumors. These findings, taken together with our present
studies of CD8þ TIL versus PBL in tumor-bearing mice
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Figure 5. CD8þ T-pro expression profile is associated with malignant progression. (a) TIL from week 16 carcinomas (malignant) versus papillomas (benign)
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1732 Journal of Investigative Dermatology (2010), Volume 130

B Kwong et al.
CD8þ IL-17-Producing T-pro



suggest that CD8þ T cells recruited from the periphery into
the tumor microenvironment are subjected to local factors
(for example, produced by the tumor cells or recruited
inflammatory cells, such as tumor-associated macrophage)
that substantially influence their differentiation and effector
function. The downregulation of IL-6Ra observed in our
CD8þ TIL specifically suggest that local IL-6 may, through
STAT-3 signaling (Harris et al., 2007), downregulate T-bet
and Eomes and upregulate RORgt in the infiltrating CD8þ T
cells. In addition, the downregulation in CD8þ TIL of natural
killer group 2D and FasL that we show with tumor
progression to malignancy may result from chronic stimula-
tion or soluble ligands released by tumor cells, consistent
with our previous findings of immune effects of soluble
natural killer group 2D ligands.

Under a ‘‘corruption hypothesis’’ (Figure 6), antitumor
CD8þ CTLs may redirect into CD8þ T-pro that inhibit CTLs
(for example, through IL-10), enhance chronic inflammation
(for example, through IL-17A and IL-17F), and facilitate tumor
proliferation (for example, through amphiregulin and Gro-1).
Consistent with this, Wakefield and colleagues showed that
CD8þ PBL isolated from tumor-bearing mice will produce
IL-17A under the in vitro influence of TGF-b and IL-6, and
revealed that IL-17A itself suppresses tumor cell-line apop-
tosis by a yet unknown mechanism (Nam et al., 2008).
Furthermore, several investigators have reported on the
potential of IL-17 to directly increase tumor progression,
including by its pro-angiogenic effects (Sfanos et al., 2008;
Zhu et al., 2008; Zhang et al., 2009). It is possible that T-pro

may represent an expansion within the tumor microenviron-
ment of a preexisting IL17-producing subset of CD8þ T cells
that circulates in small quantities in the periphery. According
to Kondo et al. (2009), IL-17-producing CD8þ T cells are
present in small numbers in the peripheral blood of healthy
humans, raising the possibility that such cells can circulate in
small numbers in healthy individuals and can expand in
certain inflammatory/pathological environments, such as
tumors.

T helper 17-differentiated cells have been strongly
implicated in the pathogenesis of psoriasis (see Nickoloff
et al., 2007), which is a cutaneous disorder characterized
by neutrophilic and lymphocytic chronic inflammation and
epidermal hyperproliferation. Yet, psoriasis has shown little
evidence of increased transformation to squamous cell
carcinoma within the lesional skin. One possible explanation
for this phenomenon is that psoriatic T cells may be further
differentiated toward effector TH17, whereas in our system,
CD8þ T-pro may resemble regulatory TH17 cells. The latter
may produce regulatory factors, such as IL-10, that inhibit
cell-mediated immunity (Le Poole et al., 2008), which might
otherwise help protect against malignant clonal expansion
and lower levels of IL-17. Further studies of CD8þ perforinHI

versus CD8þ perforinLO populations identified within the
infiltrates of human psoriasis lesions and squamous cell
carcinoma, and their relationship to CD8þ T-pro observed in
our experimental system, may help elucidate the reason why
the chronic inflammatory disease psoriasis is apparently
resistant to carcinogenesis.

Amphiregulin, one of the several epidermal growth factors
(EGFs), has been implicated in stimulating epidermal
proliferation in both psoriasis (Cook et al., 2004) and
squamous cell carcinoma (Billings et al., 2003; Berasain
et al., 2007). The fact that T cells may specifically serve as a
major source of amphiregulin production was shown recently

Table 2. CD8+ T-pro defining genes are associated
with progression to carcinoma
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Figure 6. CD8þ T-cell corruption hypothesis. Antitumor CD8þ cytolytic

T cells (CTLs) may be redirected into CD8þ T-pro that inhibit T cell-mediated

responses (for example, through IL-10), enhance chronic inflammation

(for example, through IL-17A and IL-17F), and facilitate tumor proliferation

(for example, through AREG and Gro-1).
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in animal models of nematode infections (Zaiss et al., 2006).
In this model, T-cell secretion of amphiregulin stimulated
airway and gut epithelial proliferation that mediated
immunoprotection from microbial assault, and in addition
also fostered the associated epithelial inflammatory states
through previously unrecognized cytokine properties attribu-
table to amphiregulin. It is intriguing to consider that
amphiregulin production by CD8þ T-pro might serve a dual
role in tumor promotion––through its EGF properties and its
inflammation-inducing cytokine activities––that might help
link chronic inflammatory states with carcinogenesis (for
example, bronchitis, gastritis, colitis with lung, stomach, and
colon cancer).

Our findings are consistent with recent studies of anti-IL-
17 administration in two-stage chemical carcinogenesis that
resulted in decreased DMBA/TPA-induced inflammation,
epidermal proliferation, and papilloma formation (Hamada
et al., 2009; Xiao et al., 2009). The information gained by our
analyses also suggests how the capacity to pharmacologically
target RORgt might be usefully added to the armamentarium
of cancer therapy. Nonetheless, a concern for immunother-
apy shown in this study is that the ‘‘default’’ situation for
T-pro cells in the absence of RORgt may be a T-reg state, as,
consistent with other experiments on T-cell differentiation,
FoxP3 and IL-10 are enriched in T-pro cells. Although the
potent regulatory effects of IL-10 on TH1 cell-mediated
immunity have been well established, the role of Tim-3 is
more complex. Originally identified as a marker of TH1
differentiation, Tim-3 expression by effector CD44HI

CD62LLO CD8þ T cells has recently been reported (Wang
et al., 2007). Notably, engagement of Tim-3 by its ligand
galectin-9 diminished cytotoxicity. Furthermore, Geng et al.
(2006) recently reported that the soluble form of Tim-3
markedly inhibited T cell-mediated responses and enhanced
tumor growth. It is yet to be determined whether CD8þ T-pro
facilitate tumor growth by inhibiting antitumor responses by
the local production of IL-10 or soluble Tim-3.

Although both CD4þ and CD8þ T-cell responses may be
necessary for optimal antitumor immunity (Arbiser et al.,
2002; Girardi et al., 2004), immunotherapy strategies are
often designed to stimulate CD8þ T cells in an attempt to
produce CTLs capable of tumor-specific cytotoxicity. How-
ever, one might consider that within individuals who harbor
inflammatory-associated tumors, the possibility exists that the
stimulation of CD8þ T cells may enhance the activities of
cells with the capacity to facilitate malignant progression.
The experimental system presented provides a pathophysio-
logical context in which to study tumor-promoting T cells by
establishing that chemical induction of epithelial tumors
results in the infiltration by CD8þ IL-17-producing cells, and
that their expression profile is clearly associated with tumor
progression. Thus, the analyses presented will help guide
further investigation into these potential mechanisms of
CD8þ T cell-mediated tumor promotion. In addition, this
study may provide insight into inflammatory skin diseases
(such as psoriasis) in which there may be mechanistic overlap
but seemingly little effect on carcinogenesis (Nickoloff et al.,
2005).

MATERIALS AND METHODS
Animals and two-stage chemical carcinogenesis

All in vivo studies were approved by the Yale Animal Care and Use

Committee. FVB/N mice were purchased from Jackson Laboratories

(Bar Harbor, ME). CD4–/– and TCRb–/– were all backcrossed 15þ
generations onto the FVB/N background. The animal facility is

Association for Assessment and Accreditation of Laboratory Animal

Care accredited. Chemicals were obtained from Sigma (St Louis,

MO). DMBA was dissolved in acetone (4 mM), and TPA was dissolved

in 100% ethanol (0.2 mM). Application of DMBA/TPA and tumor

monitoring was performed as described previously (Roberts et al.,

2007). Briefly, initiation by pipette application of 400 (high dose) or

200 nmol (low dose) of DMBA was conducted 1 week after shaving

back hair using electric clippers, followed by depilatory cream. This

was followed by twice weekly application of 20 (high dose) or 5 nmol

(low dose) TPA. Cutaneous tumors were counted, measured, and

scored weekly as clinically apparent papillomas (typically well-

demarcated, symmetrical, pedunculated or dome-shaped papules,

without erosion or ulceration), or as clinically apparent carcinomas

(poorly demarcated, asymmetrical, non-pedunculated or dome-

shaped papules with erosion or ulceration). Tumors were evaluated

by visual inspection by an observer (RBF) blinded to the experimental

groups. At the conclusion of the experiments, tumors were excised for

TIL isolation, or formalin-fixed, paraffin-embedded, and 5-mm-thick

sections were hematoxylin and eosin stained and examined (by AG)

for histological confirmation.

PBL and TIL isolation

To obtain PBL samples, after anesthesia by methoxyflurane inhala-

tion, mice were individually bled by capillary pipette of the retro-

orbital plexus. Approximately 200ml per mouse was harvested,

mixed with 30 ml of heparin 1,000 U ml�1 (Sigma), and then 5 ml

D-phosphate-buffered saline. The blood mixture was overlayed on

5 ml of Lympholyte-M (Accurate Chemical, Westbury, NY), cen-

trifuged at 600� g for 20 minutes at room temperature, and the

interface was harvested and washed twice in Hanks’ Balanced Salt

solution (HBSS) before overnight incubation in CRPMI (RPMI

medium supplemented with 10% FBS, 25 mM Hepes, 1 mM sodium

pyruvate, 100 mM nonessential amino acids, 2 mM L-glutamine,

2-mercaptoethanol, and antibiotics) at 37 1C in 5% CO2. To obtain

TIL cells, tumors were excised and minced on ice in RPMI 1640

medium supplemented with Hepes pH 7.3, 2-mercaptoethanol,

sodium pyruvate, antibiotics, collagenase I (2.5 mg ml�1) and

collagenase II (1.5 mg ml�1; both from Worthington, Lakewood,

NJ), collagenase IV (1 mg ml�1) and hyaluronidase IV-S

(0.25 mg ml�1; both from Sigma), and DNase I (300 g ml�1) and

soybean trypsin inhibitor (0.06 g ml�1; both from Roche, Indianapo-

lis, IN). Suspensions of tumor pieces were incubated at 37 1C for

2 hours. The pieces were then gently pressed between the frosted

edges of two sterile glass slides, and cell suspension was passed

through sterile 100 mm nylon mesh to remove debris and separate

cell aggregates. HBSS (HBSS supplemented with 25 mM Hepes, 1 mM

sodium pyruvate, and antibiotics) was added to stop the digestion.

Cells were washed thrice in HBSS before Lympholyte-M gradient

separation. TIL were further purified using the gradient as per the

manufacturer’s protocol, washed thrice in HBSS and resuspended in

CRPMI for overnight incubation at 37 1C in 5% CO2. The next day,

PBL and TIL were washed twice in HBSS and filtered through
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a 30-mm-thick Nytex filter and stained. Cells were either analyzed by

flow cytometry or sorted on a MoFlo (Dako, Glostrup, Denmark) for

subsequent expression analysis.

Flow cytometric analysis

Fluorescein isothiocyanate, phycoerythrin, peridinin chlorophyll

protein coupled to cyanine dye (PerCP-Cy5.5) or allophycocyanin-

conjugated monoclonal antibodies specific for CD3 (145-2C11),

CD4 (RM4-5), CD62L (MEL-14), TCRb (H57-597), CD44 (IM7), IL-

17A (TC11-18H10.1) were obtained from BD Biosciences (San

Diego, CA), and CD8b (H35-17.2) was from eBioscience (San

Diego, CA). For flow cytometry sorting, cells were stained for

30 minutes at 4 1C with a 1:100 dilution for FITC-conjugated

antibodies, 1:200 for phycoerythrin conjugated, 1:150 for PerCP-

Cy5.5 conjugated, and 1:400 for allophycocyanin conjugated in

HBSS, washed twice with HBSS. Intracellular staining for IL-17A was

performed using the BD Cytofix/Cytoperm Fixation/Permeabilization

Kit (BD Biosciences) according to the manufacturer’s protocol.

Briefly, sorted cells were incubated in CRPMI with the addition of

50 ng ml�1 of phorbol 12-myristate 13-acetate and 1 mg ml�1 of

ionomycin (both obtained from Sigma). After 1 hour of incubation,

GolgiPlug (Brefeldin A) was added to the media, and cells were

harvested for 3 hours and intracellularly stained. Isotype control

antibodies were used for background staining. Lymphocyte-gated

events were collected on a FACSCalibur and analyzed using

CellQuest software (both from Becton Dickenson, San Diego, CA).

To view colocalization of IL-17A, TCRb, and CD8b on TIL,

multispectral imaging flow cytometry using ImageStream system

and IDEAS3.0 software were used (both from Amnis, Seattle, WA).

Histology

Freshly excised carcinoma tissue was embedded in optical

coherence tomography compound and frozen in a bath of

2-methyl-butane chilled on dry ice. Sections of 6-mm thickness were

mounted on saline-treated glass slides and purified anti-mouse CD8b
(0.5 mg ml�1; BD Biosciences) was applied. A polyclonal, biotiny-

lated, mouse-anti-rat secondary antibody was followed by strepavi-

din horseradish peroxidase and the color deposition reaction

completed with 3 3’-diaminobenzidine (Dako). Control slides were

treated with the biotinylated secondary antibody alone.

RNA isolation and gene-expression analysis

A high-speed, large-scale, flow cytometric sort (MoFlo) was

performed on samples from tumor-bearing wt and CD4�/� mice

(n¼ 10–12 each) for TCRbþCD8þCD44þCD62L(�) TIL, and com-

pared with parallel sorted PBL cells by expression analysis (499.5%

purity). Total RNA was isolated using RNeasy MicroKit (Qiagen,

Valencia, CA) from the purified populations and biotinylated in an

amplification protocol using the Illumina TotalPrep RNA Amplifica-

tion Kit (Ambion, Austin, TX) before hybridization onto Illumina

Sentrix Mouse-6 Expression BeadChips (Illumina, San Diego, CA) for

comparison of expression levels of 47,000 genes. Illumina probe

signal levels were consistent with a purified sorted T-pro population

devoid of potentially contaminating CD4þ T cells, NK cells,

Langerhans cells, and keratinocytes. Production of differentially

expressed genes was confirmed by real-time quantitative reverse

transcriptase-PCR (ABI 7500) using SDS 1.4 and SDS 2.0 software

(Applied Biosystems, Foster City, CA) on independent isolations from

tumor-bearing wt mice. For the latter, RNA was isolated from the

sorted population as described earlier and then transcribed using

High-Capacity cDNA Reverse Transcription kit (ABI, Foster City,

CA). cDNA was amplified using TaqMan PreAmp Master mix and

gene specific TaqMan assays (both from ABI) as per the manufac-

turer’s protocol. Preamplified cDNA product was used in down-

stream TaqMan assays with TaqMan Gene Expression Master Mix

(ABI). Obtained Ct values were normalized against b-actin and

expression difference was calculated using the equation

RQ¼ 2�DDCt.

Statistics
Statistical significance was evaluated by the two-tailed, unpaired

Student’s t-test, or nonparametric analysis if SDs were significantly

different between the two compared groups. Graphical data are

shown with bars indicating SEMs.
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