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SUMMARY

Differentiated cells possess a remarkable genomic
plasticity that can be manipulated to reverse or
change developmental commitments. Here, we
show that the leprosy bacterium hijacks this property
to reprogram adult Schwann cells, its preferred host
niche, to a stage of progenitor/stem-like cells (pSLC)
of mesenchymal trait by downregulating Schwann
cell lineage/differentiation-associated genes and up-
regulating genes mostly of mesoderm development.
Reprogramming accompanies epigenetic changes
and renders infected cells highly plastic, migratory,
and immunomodulatory. We provide evidence that
acquisition of these properties by pSLC promotes
bacterial spread by two distinct mechanisms: direct
differentiation to mesenchymal tissues, including
skeletal and smooth muscles, and formation of gran-
uloma-like structures and subsequent release of
bacteria-laden macrophages. These findings sup-
port a model of host cell reprogramming in which
a bacterial pathogen uses the plasticity of its cellular
niche for promoting dissemination of infection and
provide an unexpected link between cellular reprog-
ramming and host-pathogen interaction.
INTRODUCTION

Differentiated adult cells are natural targets for many intracellular

bacterial pathogens. Thesepathogensoften establish infection in

their preferred niches by manipulating or subverting differenti-

ated host cell functions (Falkow, 1991). Although it is now recog-

nized that these cells posses unprecedented genomic plasticity

and nuclear reprogramming potential (Wilmut et al., 1997; Gur-

don, 1962; Gurdon and Melton, 2008; Theise and Wilmut, 2003;

Takahashi andYamanaka, 2006) it is not knownwhether bacterial
pathogens have coevolved to leverage such host cell plasticity

for their advantage. Among differentiated cells, Schwann cells,

the glial cells of the adult peripheral nervous system (PNS) that

are comprisedofmyelin-forming andnon-myelin-formingpheno-

types (Jessen andMirsky, 2005), show remarkable plasticity and

contribute to the regeneration capacity of the adult PNS even

after severe injury (Fawcett and Keynes, 1990). Mycobacterium

leprae (ML), which causes human leprosy, establishes infection

in adult Schwann cells, a primary nonimmune target, and causes

subsequent neurological injury, leading to sensorimotor loss

(Job, 1989; Shetty et al., 1988; Stoner, 1979).

Although ML infection in humans initially presents with inflam-

mation-mediated sensorimotor loss (Job, 1989; Miko et al.,

1993; Scollard et al., 2006; Stoner, 1979), the early events of

PNS infection in human are unknown. ML is a strictly obligate

intracellular pathogen with a severely decayed bacterial genome

and is totally dependent on host cell functions for survival (Cole

et al., 2001). Recent studies have suggested that ML uses the

regeneration properties of the PNS for expansion of the bacterial

niche within Schwann cells (Rambukkana et al., 2002, 2010;

Tapinos et al., 2006). In patients with advanced leprosy, regener-

ation of damaged peripheral nerves has been documented

despite the bacterial presence (Miko et al., 1993). This may

also reflect the bacterial efforts to secure and propagate the

Schwann cell niche during human infection. Thus, once invaded,

ML uses strategies that promote Schwann cell endurance or

rejuvenation in order to maintain infected cells in active stage

so that essential host factors critical for bacterial survival can

be acquired. In addition, Schwann cells also serve as a safe

haven for ML, as the PNS blood-nerve barrier protects ML

from host immune assault (Job, 1989; Stoner, 1979). Such favor-

able conditions, which are assisted with the nontoxic, noncyto-

pathic, non-apoptotic, and nontumorigenic nature of ML, permit

bacterial residencewithin host cells for a long period (Lahiri et al.,

2010; Tapinos and Rambukkana, 2005).

The bacillary load in Schwann cells is a critical determinant for

the subsequent immunopathology that manifests in various

tissues following ML dissemination (Miko et al., 1993). After

Schwann cell colonization, leprosy bacilli need an exit route in
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Figure 1. Adult Peripheral Nerve-Derived Schwann Cells Undergo Reprogramming Events in Response to Intracellular ML

(A and B) Methylin-blue-stained semithin section of adult nerves (A, left) fromwhich Schwann cells were isolated (phase image; A, right) and purified by FACSwith

anti-p75 antibody (B). Scale bar represents 50 mm.

(C) RT-PCR of purified p75+ Schwann cells. Highlighted genes (red dots) are late Schwann cell developmental and myelin markers that are not present in neural

crest cells. See also Figure S1.

(D) Purified Schwann cells were infected with M. leprae (ML), fixed at day 7, and immunolabeled with anti-p75 (red) and anti-PGL-1 (iML in green) antibodies,

counterstained with DAPI (blue). Insets: BrdU uptake (green; top) and antibody to phospho-histone H3 (Ser28) (green; bottom) double-labeled with PGL-1

antibody (red). Scale bars represent 50 mm.

(legend continued on next page)
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order to successfully infect other tissues and transmit infection.

In leprosy patients, disseminated ML could be seen in several

tissues, including skeletal muscles and smooth muscles (Pear-

son et al., 1970; Job, 1989; Kaur et al., 1981; Scollard et al.,

2006; Werneck et al., 1999). Also, the involvement of skeletal

muscles in human leprosy is considered secondary due to

peripheral neuropathy with the obvious peripheral-nerve inner-

vations of skeletal muscles (Pearson et al., 1970; Werneck

et al., 1999). However, it is unknown how initial colonization of

ML in Schwann cells subsequently leads to the spread of infec-

tion to other tissues.

In this study, we show that leprosy bacteria trigger reprogram-

ming of adult Schwann cells to a stage of progenitor/stem-like

cells (pSLC) with migratory and immunomodulatory properties

that promote bacterial dissemination. Reprogrammed cells facil-

itate bacterial spread by two distinct mechanisms—by direct

differentiation to mesenchymal tissues, skeletal muscles, and

smooth muscles and by contributing to form granuloma-like

structures (GLS) that subsequently release bacteria-laden

macrophages. Our findings present an unexpected link between

cellular reprogramming and host-pathogen interaction and thus

direct to potential new therapeutic strategies for combating

infections with pathogenic bacteria.

RESULTS

Schwann Cells Derived from Adult Peripheral Nerves
Undergo Reprogramming Events in Response to
Intracellular ML
We recapitulated the colonization of ML and subsequent early

molecular events in adult Schwann cells by infecting primary

Schwann cells isolated from adult mouse peripheral nerves.

We isolated Schwann cells from adult wild-type and Sox2-

green fluorescent protein (GFP) transgenic mice and purified

by fluorescence-activated cell sorting (FACS) with antibody to

Schwann cell-surface marker p75 NTR or GFP expression under

the control of Sox2 promoter, respectively (Figures 1A–1C, 2A,

and 2B and Figures S1 and S3A available online). Single-cell-

derived Schwann cells were generated from FACS-sorted cells

and characterized extensively (Figure S1). All were positive for

the markers for late Schwann cell development and myelina-

tion-associated genes (Figures 1C and S1). Most of these differ-

entiation markers are not present in neural crest stem cells and

do not appear until around the time of birth (Jessen and Mirsky,

2005; Finzsch et al., 2010). Therefore, they represent mature de-

differentiated Schwann cells. Moreover, karyotyping of these

cells showed intact chromosome numbers and no evidence of

translocation, suggesting their genomic stability (Figure S1).

As expected, these dedifferentiated adult Schwann cells are

highly susceptible toML infection with rapid bacterial engulfment

with >90% efficiency (Figures 1D, 2Ac, and S1). We performed
(E–G) Expression of nuclear Sox10 in control (E) and infected (F) Schwann cells

counterstained with DAPI (blue) (F). Shown in (F) are selected representative Delta

(arrowheads). (G) Quantification of nuclear Sox10 in control and infected Schwa

(H and I) Gene array analyses at days 14 and 27 post-infection. Schwann cell lineag

transcription factor (TF) genes (I) are shown as fold change in expression.

See also Figure S2 and Table S1.
extensive genome-wide transcriptome profiling with Affymetrix

mouse genechips and subsequent RT-PCR and quantitative

PCR (qPCR) analyses. Strikingly, infected Schwann cells com-

pared to uninfected/control Schwann cells, which were main-

tainedunder identical experimental conditions, showedupregula-

tion of numerous genes of embryonic development, transcription,

chromatin remodeling, cell signaling, chemokines, and cell divi-

sion-cycle/DNA replication (Figures 1I and S2). The latter was

consistent with a moderate increase of S phase cells in infected

cultures; despite the presence of numerous intracellular ML

(iML), infected cells showed BrdU uptake and phospho-histone

H3 (S28) positive nuclei,which represent theS andmitotic phases

of the cell cycle, respectively (Figure 1D, insets). Strikingly, ML

infection was followed by the removal or export of Sox10 from

Schwann cell nuclei (Figures 1E–1G). Whereas, similar to unin-

fected/control cells, infected Schwann cells that carry fewer iML

maintained Sox10 exclusively in nuclei, high bacterial load

invariably caused the removal of nuclear Sox10, which might

affect the regulation of its key target Schwann cell genes,

including myelin gene Mpz (Figures 1E–1G) (Finzsch et al., 2010;

Jessen andMirsky, 2005;Weider et al., 2012). Indeed, downregu-

lation of myelin genes was found in infected Schwann cells over

time (Figure 1H). Sox10 is a master regulator of Schwann cell

homeostasis, identity, and myelin maintenance as well as differ-

entiation, with nuclear Sox10 being required to recruit chro-

matin-remodeling complexes (Finzsch et al., 2010; Weider et al.,

2012). Therefore, bacterial-induced removal of Sox10 from nuclei

is likely to perturb normal Sox10-mediated transcriptional events.

Together, these findings set the stage for a potential reprogram-

ming or change in Schwann cell fate in response to iML.

Mesenchymal Transition and Induction of EMT-like
Program in Adult Schwann Cells
The fate of iML-induced effects on Schwann cells was examined

by gene-expression analyses over a 4 week period. Strikingly,

only infected cells gradually ‘‘turn off’’ Schwann cell differentia-

tion/myelination- and lineage-associated genes and ‘‘turn on’’

numerous developmental genes, comprising mostly the meso-

derm development, including homeodomain/Hox, EMT, and

neural crest-related genes (Figures 1H, 1I, and S2); at day 27

post-infection, most of the Schwann cell lineage and differentia-

tion/myelination genes, but not negative regulators of myelina-

tion like Sox2 and c-Jun (Jessen and Mirsky, 2005), were down-

regulated (Figures 1H and S2), suggesting that iML gradually

shuts down the Schwann cell differentiation program. Figure 1I

shows the selected key developmental-regulated transcription

factor (DRTF) genes (with known functions; Table S1).

A major tissue-remodeling program that is central to early

mesoderm development during embryogenesis is EMT (Polyak

and Weinberg, 2009). Interestingly, master regulators of EMT,

Twist1 and 2, Snail2, and Msx2, which are capable of inducing
at day 10 post-infection; antibodies to Sox10 (red) and PGL-1 (iML; green),

vision images from infected cultures with high (arrows) and low bacterial loads

nn cells with iML per cell. Scale bars represent 10 mm.

e/differentiation-associated genes (H) and development- and EMT-associated
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Figure 2. Induction of Mesenchymal Transition in Clonal Schwann Cells by ML Generates pSLC

(A) Phase image of single cell (inset)-derived Schwann cells from wild-type mice (a). (b) RT-PCR of p75+ FACS-sorted control Schwann cells from wild-type mice

(lane 2), clonal Schwann cells from wild-type mice (lane 3), and clonal Schwann cells from Sox2-GFP mice (lane 4); lane 1, negative control (water only).

(legend continued on next page)
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EMT in epithelial cells (Mani et al., 2008) (Table S1), were among

the highly upregulated transcription factor (TF) genes in ML-in-

fected Schwann cells (Figures 1I and S2). The observed cell-

fate changes in Schwann cells are complex as infection involves

upregulation of multiple developmental and functional genes

(Figures 1H, 1I, and S2; Table S1), and these events are not asso-

ciated with tumor-suppressor genes like p53 or Schwann cell

tumor-associated gene NF1 (Figures S2A and S3A).

Our findings also suggest that reprogramming requires a high

number of intracellular bacteria (>50 iML/cell with >90% infec-

tion efficiency) and a long-term incubation; we could not find

any significant change in gene expression or the removal of

nuclear Sox10 at a much lower rate of infection (<10 iML/cell;

Figures 1E–1G). Shortage or lack of such optimum conditions

appears to weaken or fail to induce transcriptional changes.

For example, the observed changes in gene expression are

highly significant with live ML, as compared to irradiated ML;

bacterial components like PGL-1 did not show reprogramming

events, despite their capacity to induce rapid demyelination

upon their extracellular binding to myelinated Schwann cells

(Rambukkana et al., 2002). This appears to be due to high inva-

sion capacity of live ML and thus the long-term exposure of

Schwann cells to a high number of iML. In addition, incubation

of Schwann cells with other mycobacteria like Mycobacterium

smegmatis did not lead to reprogramming (data not shown).

Bacterially Reprogrammed Schwann Cells Exhibit
Properties Similar to pSLC
To isolate reprogrammed cells from the infected cell population,

we transferred clonal-infected Schwann cells to mesenchymal

stem cell medium (Mscm), which is selective for mesenchymal

stem cells (MSC) from bone marrow cells (Li et al., 2009). In

Mscm, only reprogrammed Schwann cells showed a high prolif-

eration index as demonstrated by BrdU uptake (Figure 2Ad);

>90% of these BrdU+ cells were negative for Schwann cell

lineage markers p75 and Sox10 as well as other mature

phenotypes (Figure 2A). We used this property to select a

p75� population by FACS sorting. Analyses of these p75� cells

by microarrays, RT-PCR, qPCR, immunofluorescence (IF), and

FACS revealed the loss of all Schwann cell lineage/myelin-

specific markers and acquisition of various mesodermal and

neural crest markers (Figures 2C, 2D, S3A, and S3B). Thus, we

concluded that iML converted Sox2+/p75+/Sox10+ Schwann

cells to Sox2+/p75�/Sox10� reprogrammed cells with loss of

Schwann cell markers (Figures 2B and S3A), which we referred
(c) Infected clonal wild-type Schwann cells at day 7 (PGL-1+ML, green; p75+ Schw

cells maintained in mesenchymal stem cell media (Mscm); anti-p75 antibody in red

that express CD73 (e-inset). Magnification 203; Inset (e): 40�.

(B) FACS analysis of GFP+(Sox2+)/p75+ Schwann cells isolated from adult Sox2-G

(b) were infected with ML for 4 weeks (also see Figure S1M) and transferred to

aggregated infected cells maintained in Mscm before FACS; p75+ (red) and DAPI

cells showing GFP+/Sox2+ (e) and p75� (f) cells, which are referred to as pSLC. (

differentiation media (lane 3). Magnification (d): 103.

(C) RT-PCR of embryonic/developmental marker genes in pSLC as compared to

(D) qPCR for differential expression of selected embryonic/developmental marke

error of the mean (SEM) from three samples.

(E) Cell-fate change of Schwann cells to pSLC accompanies changes in DNAmet

cell-lineage genes as analyzed by pyrosequencing.
to as pSLC because of their stem cell characteristics (see below).

Further characterization revealed the expression of CD73, CD44,

Sca-1, and Cd29 MSC markers but the absence of hematopoi-

etic markers CD45, CD34, and c-kit (Figure S3H). pSLC also

acquired highly migratory properties as evident by their migra-

tion through connective tissues when administered into injured

muscles (Figures S3F and S3G).

ReprogrammingRemovesSchwannCell Lineage/Myelin
Regulator Sox10 and Maintains Stem Cell Marker Sox2
Conversion of parent Schwann cells to pSLC led to the loss of

Schwann cell master regulator Sox10 but maintained Sox2. To

track Sox2 expression during reprogramming, we generated

clonal Schwann cells isolated from adult Sox2-GFP mice (Eminli

et al., 2008). Clonal cells in Schwann cell media maintained both

Sox10 and other mature Schwann cell markers, whereas in-

fected cells lost Sox10 and other Schwann cell markers and

subsequently changed into pSLC when maintained in Mscm

(Figures 2A and 2B). Infected Schwann cells continued to

maintain GFP (Sox2) expression but upon reprogramming lost

expression of p75, Sox10, and other mature markers (Figures

2Ba–2Bd). When pSLC were maintained in Mscm, clusters of

infected GFP+ cells with both p75� and p75+ were frequently

observed (Figure 2Bd). When p75� reprogrammed cells in

Mscm were isolated by FACS sorting, they continued to express

GFP (Sox2) despite the loss of lineage/mature Schwann cell

markers (Figures 2Bc–2Bg). However, GFP/Sox2 expression

disappeared when pSLC were subjected to bone differentiation

(Pittenger et al., 1999), which in contrast upregulated bone

marker osteocalcin (Figures 2Bg and 3C), further underscoring

stem cell characteristics of pSLC. Tracking the GFP expression

from parent GFP+/Sox2+/p75+/Sox10+ Schwann cells to GFP+/

Sox2+/p75�/Sox10� pSLC at the clonal level, we confirmed

that pSLC are derived from Schwann cells but not from any

progenitor cell type within the Schwann cell preparation.

Reprogramming Schwann Cells to pSLC Accompanies
Epigenetic Changes
We next examined whether this change in cell fate is epigeneti-

cally regulated. We analyzed DNA methylation at 5 methylcyto-

sine in cytosine guanine dinucleotide (CpG) in the promoter

regions of selected genes that are expressed and repressed in

pSLC as compared to parent Schwann cells. Methylation status

was assessed by bisulfite pyrosequencing, which allows quanti-

tative determination of the extent of methylation of each cytosine
ann cells, red). (d) BrdU uptake (green arrowheads) of day 27-infected Schwann

(arrows), and nuclei (DAPI) in blue. (e) Phase image of p75� FACS-sorted cells

FP mice (a). Clonal GFP+/p75+ cells derived from FACS-sorted Schwann cells

Mscm, and Sox2+/p75� population was gated for FACS (c). (d) IF analysis of

(blue). Inset shows PGL-1+ ML as green rods. (e and f) FACS analysis of sorted

g) RT-PCR of control Schwann cells (lane 1), pSLC (lane 2), and pSLC in bone

control Schwann cells and mouse ESCs. See also Figure S3.

r genes in pSLC relative to control Schwann cells. Data are mean ± standard

hylation statuses of promoter regions of key developmental/EMT and Schwann

Cell 152, 51–67, January 17, 2013 ª2013 Elsevier Inc. 55
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Figure 3. Broader Developmental Potential of Reprogrammed pSLC Promotes Bacterial Spread to Mesenchymal Tissues by Direct

Differentiation
(A and B) Expression of tissue-specific gene clusters in pSLC as compared to control Schwann cells as analyzed by gene arrays (A). qPCR of some of the selected

tissue-specific genes in pSLC. Data are mean ± SEM from two samples.

(legend continued on next page)
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in a given DNA sequence (Extended Experimental Procedures

and Data S1). We found that most CpG sequences in promoter

regions of mesodermal/EMT genes, Twist1, Prrx1, Tbx18, and

Bmp6, are significantly less methylated in pSLC as compared

to Schwann cells (Figure 2E), suggesting that the epigenetic

statuses of these genes were reprogrammed from a transcrip-

tionally repressed state to an active state in pSLC. In contrast,

the extent of methylation of the CpGs in Sox10 is significantly

higher in pSLC and was strongly demethylated in Schwann cells.

This correlates directly with loss of Sox10 expression in pSLC

(Figures 2Bg and S3A). These findings suggest that reprogram-

ming causes significant epigenetic changes in some of the key

regulatory genes.

Differentiation Potential of Reprogrammed Schwann
Cells to Mesenchymal Tissues
We analyzed gene arrays to assess the ability of pSLC to differ-

entiate into different tissue types in Mscm (Figure 3A). Of the

total tissue-specific genes, 56% of the transcripts accounted

for mesoderm-related targets. qPCR of selected such genes

confirmed these findings (Figure 3B). Consistent with these

findings, pSLC differentiated into typical mesenchymal tissues

under various well-established differentiation protocols. Under

bone differentiation conditions, pSLC showed increased alka-

line phosphatase activity and mineral deposition (Figures 3C

and 2Ag); in adipocyte differentiation media, pSLC produced

Oil Red O dye-positive lipid droplets that are characteristic of

mature adipocytes (Figure 3D) (Pittenger et al., 1999). Based

on the muscle-specific gene-expression patterns (Figures 3A,

3B, and S3), we also tested the potential of pSLC to dif-

ferentiate into muscle lineage. Whereas pSLC spontaneously

differentiated into SMA+ smooth muscle-like cells (Figure 3E),

coculturing pSLC with C2C12 myoblasts (Shi et al., 2004)

contributed to myotube formation (Figure 3F). However, ML-

induced reprogramming does not cause Schwann cells to

acquire tumor formation capacity, as pSLC did not form tera-

tomas or any kind of tumor formation in SCID mice (data not

shown).

Reprogrammed Schwann Cells with Stem Cell-like
Properties Promote Dissemination of Infection to
Skeletal Muscles and Smooth Muscles by Direct
Differentiation
We hypothesized that pSLC promote the transmission of ML into

mesenchymal tissues by direct differentiation. As skeletal and

smooth muscle tissues are known to harbor ML in leprosy

patients, we used mouse models to test this hypothesis directly
(C–F) Differentiation potential of pSLC into various mesenchymal tissues. (C) Bon

in brown; red arrows) and the expression of alkaline phosphatase activity (in b

produced mature adipocyte-like cells as detected by Oil red staining. (E) pSLC

(F) Coculture of GFP+ pSLC with C2C12 myoblasts contributed to GFP+ myotub

(G–N) pSLC passively transfer infection to myotubes following differentiation. Inf

under the influence of C2C12 myoblasts. Multinucleated GFP+ myotubes (G and

PGL-1 antibody (red) counterstained with DAPI and visualized under fluorescenc

Antibody to E-myosin detected early stages of multinucleated myotubes that carr

Magnifications: (G, H, and M): 403; (I–L): 203.

(O–Q) ML-infected pSLC spontaneously differentiate into SMA+ smooth muscle-

stained with DAPI (blue) (P and Q). (O) Quantification of SMA+ cells with and with
in vitro and in vivo (Gupta et al., 1975; Kaur et al., 1981; Pearson

et al., 1970; Werneck et al., 1999).

Bacterial Dissemination by Direct Differentiation
In Vitro
To determine whether ML spread to myotubes in a skeletal

muscle-like microenvironment in vitro, we cocultured infected

pSLC with C2C12 myoblasts (Shi et al., 2004). For these exper-

iments we reinfected pSLCwith ML in order to maintain bacterial

load. Also, to track the contribution of pSLC, we introduced

a lentivirus-based CopGFP reporter gene into clonal pSLC

derived from wild-type Schwann cells. Stably expressed GFP+

cells were isolated by FACS. When infected GFP+ pSLC were

cocultured with C2C12 myoblasts, pSLC fused with myoblasts

and contributed to GFP+ myotube formation (Figures 3F and

3G). This process accompanied the passive transmission of

iML from GFP+ pSLC to GFP+ myotubes (Figures 3G and 3H).

Immunolabeling with antibodies to PGL-1 (ML) and myosin

heavy chain (myosin HC) confirmed the transmitted iML in

GFP+ multinucleated myotubes (Figures 3G and 3H) that

are also positive for myosin HC (Figures 3I–3L). Antibody to

E-myosin labeled the early stage of multinucleated myotubes

with transmitted iML, and GFP+ myotubes harboring iML clearly

showed a passive bacterial transmission from reprogrammed

pSLC following differentiation (Figures 3M and 3N).

We next tested the spread of ML to smooth muscle-like cells

from infected pSLC. When pSLC were maintained in Mscm for

several passages, �0.5% of pSLC spontaneously differentiated

into SMA+ smooth muscle-like cells (Figure 3P). This propensity

of pSLC allowed direct ML transfer from infected SMA�pSLC to

SMA+ cells with a clear actin filament network that can easily be

distinguished from undifferentiated pSLC (Figures 3P and 3Q).

Bacterial Dissemination by Direct Differentiation In Vivo
To further validate the in vitro findings, we used a widely

used cardiotoxin-induced skeletal-muscle injury model, wherein

damaged muscle fibers are replaced spontaneously by regener-

ated muscles in the presence of an anti-inflammatory microenvi-

ronment (Chargé and Rudnicki, 2004; Tidball and Villalta, 2010).

We used nude mice, as they lack T cells and produce a relatively

less complex inflammatory microenvironment comprising pre-

dominantly macrophages. Our rationale was that pSLC, which

express muscle-development and differentiation genes similar

to muscle progenitors (Figures 3 and S3), would contribute

to myotube formation under the physiological conditions of

an injury-induced regenerating microenvironment (Chargé and

Rudnicki, 2004). Such conditions somewhat mimic the ML
e differentiation as analyzed by von Kossa staining (mineral/calcium deposition

lue; yellow arrows) (see also Figure 2Bg). (D) Adipocyte differentiation media

spontaneously differentiate into SMA+ smooth muscle-like cells in culture.

e formation; shown is a live fluorescence/DIC image. Magnifications: 203.

ected GFP+ pSLC (green) transfer ML to GFP+ myotubes upon differentiation

H) show the acquisition of ML (white and yellow arrows) as detected by anti-

e/DIC (H). These ML+ GFP+ myotubers were also positive for myosin HC (I–L).

y numerous iML (M). (N) Quantification of GFP+ myotubes with and without ML.

like cells as detected by antibodies to PGL-1 (green) and SMA (red) counter-

out ML. Magnification: (P) 403; (Q) 603.
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Figure 4. Redifferentiation of Reprog-

rammed pSLC Contributes to Passive

Bacterial Transfer to Skeletal Muscles and

Smooth Muscles In Vivo

(A–D) Transverse frozen sections of TA muscles

injected with ML-infected GFP+ pSLC after

10 days. Deltavision images showed GFP+ pSLC

(green) either fused with myofibers (A and B) or

migrating in between muscle fibers (C and D).

Antibodies to adult myosin detected muscle fibers

(red in A and B and blue in D), and laminin

demarcated individual muscle fibers (red in C).

Antibodies to PGL-1 detected ML (in red; arrow)

associated closely with muscle fibers (D). Aster-

isks in all figures denote individual myofibers.

Magnifications: 603.

(E–J) Infected GFP+ pSLC were incorporated into

regenerating muscles at 3 weeks post-injection.

GFP+ myofibers are positive for adult myosin

(E and F) and are demarcated by laminin (G and H).

pSLC incorporation passively transmitted ML

to myofibers as detected by PGL-1+ ML (red;

arrows) in GFP+myofibers (I and J). Magnifications

(Deltavision images): 403.

(K and L) Bacterial presence within the skeletal

muscle fibers (asterisks) was confirmed by acid-

fast mycobacterial staining (red). Arrows show

clumps of rod-shaped ML in several individual

muscle fibers. Magnifications: 603.

(M–P) Administered infected GFP+ pSLC differ-

entiate into SMA+ smooth muscles in the dermal

area. Antibody to SMA (red) colocalizes with

differentiated GFP+pSLC (green; arrowheads);

merged image is shown in (O). Magnifications:

(M–O) 403. (P) Higher magnification (1003)

showed the PGL+ML (red; arrows) within SMA+

smooth muscles (blue) near dermal vessels.
infection-associated inflammation in muscles and thus com-

mensurate with the muscle pathology documented in the lepro-

matous form of leprosy in patients with high bacterial load (Gupta

et al., 1975; Werneck et al., 1999).

We first injected cardiotoxin into the tibialis anterior (TA)

muscles of nude mice, and the muscle injury, inflammation,

and repair process were confirmed by histological studies and

immunolabeling (data not shown). GFP+ pSLC containing ML

were then injected into preinjured TAmuscles, and their distribu-
58 Cell 152, 51–67, January 17, 2013 ª2013 Elsevier Inc.
tion was examined at different time inter-

vals. Antibody staining to adult myosin

clearly showed the intimate interaction

and early fusion process of ML-laden

GFP+ cells around the muscle fibers at

the injury site after day 10 (Figures 4A–

4D). The engrafted GFP+ pSLC were

detected within muscle milieu at days 14

and 21 either as fused to resident regen-

erating fibers or fully integrated into

smaller diameter myofibers that express

adult myosin and are demarcated by lam-

inin in the basal lamina (Figures 4E–4H).

Anti-PGL-1 antibody staining that specif-
ically identifies ML (Ng et al., 2000) confirmed the bacterial pres-

ence within fully integrated GFP+ myofibers (Figures 4I and 4J).

Specific acid-fast mycobacterial staining further confirmed rod-

shaped ML within myofibers (Figures 4K and 4L). In contrast to

pSLC, injection of nonreprogrammed infected GFP+ Schwann

cells (infection only for 2 days) to injured TA muscles failed to

transmit infection to regeneratingmuscle fibers (data not shown).

Similarly, we also found that administered infectedGFP+ pSLC

can differentiate into SMA+ smooth muscles (or myofibroblasts),



and ML can be detected within SMA+ smooth muscles in the

dermal area of muscle-skin interphase and associated blood

vessels (Figures 4M–4P). In contrast, infected GFP+ Schwann

cells (nonreprogrammed cells infected for 2 days only) neither

differentiated into smooth muscles nor contributed to transfer-

ring infection to SMA+ cells (data not shown). Together, these

results suggest that under the influence of injury and inflamma-

tory tissue microenvironment, infected pSLC could elaborate

their migratory capacity and differentiate into myofibers or

smooth muscles and passively transmit ML to these tissues

that are favorable for sequestration of infection.

Reprogrammed pSLC Acquire Immunomodulatory
Properties
We examined whether reprogrammed pSLC also secrete immu-

nomodulatory factors in a way similar to that of MSCs. To test

this, we first used mouse chemokine/cytokine protein arrays to

analyze proteins released into serum/supplement-free condi-

tioned media (CM) from pSLC. Figure 5A shows the quantitative

analysis of differentially expressed soluble proteins released by

pSLC. Strikingly, pSLC produced a range of chemokines, cyto-

kines, growth/survival factors, soluble adhesion receptors, and

tissue-remodeling factors to varying degrees (Figures 5A and

S4). These findings also validate the MSC-like functional proper-

ties of pSLC because almost all chemokines/cytokines that are

known to be produced by MSC are also released by pSLC (Fig-

ure 5A) (Hoogduijn et al., 2010; Klopp et al., 2011). Although

a fewer number of these proteins are also released by control/

uninfected Schwann cells, the fold increase of their expression

is several fold higher in pSLC (Figures 5A and S4), suggesting

a greater potential of pSLC to participate in multiple immuno-

modulatory functions. Interestingly, once reprogrammed, pSLC

continued to secrete soluble factors regardless of bacterial pres-

ence, as complete removal of ML from pSLC (with no detectable

ML genomic DNA) continued to produce almost the same

soluble proteins (Figures 5A, inset and S4).

pSLC-Derived Soluble Factors Mediate Macrophage
Survival and Migration
We next examined the functional effects of pSLC-derived immu-

nomodulatory factors on tissue macrophages. As a source, we

used freshly isolated mouse peritoneal macrophages, which

comprised >85% F4/80+ and �100% CD68+ macrophages.

When incubated with pSLC-CM alone, both F4/80+ and CD68+

macrophages were maintained >14 days, whereas the majority

of macrophages inmedium alone did not survive or lifted off early

in cultures (Figure 5B). Macrophages maintained in pSLC-CM

showed a firm attachment and elongated morphology with

strong F4/80 expression, suggesting possible maturation of

macrophages in pSLC-CM. pSLC-CM also influenced increased

survival of macrophages with minimum apoptosis (Figure 5C).

However, pSLC-CM did not increase S phase cells significantly

(data not shown).

Consistent with the chemokine/cytokine production, pSLC-

CM attracted a significant number of macrophages when a cell

migration assay was performed with the Trans-well system

(Figures 5D–5F). Migration capacity was further increased in

the presence of live pSLC, implying that freshly secreted pSLC
factors attracted a higher number of macrophages (Figures 5E

and 5F). Although pSLC-CM-induced macrophage migration

was slightly decreased (<10%) in the presence of a standard

dose (200–1000 ng) of broader CC-chemokine inhibitor, CCI

(recombinant viral CCI-Fc chimera), which has shown to be

effective in other studies (Buatois et al., 2010), a high dose of

nontoxic concentrations of CCI (5000 ng) was required to

produce a significant inhibition of migration (Figure 5G). Because

pSLC produce an array of soluble proteins (Figures 5A and S4),

our data suggest that a collective effect of immune factors, but

not CC-chemokine alone, is required to exert effective macro-

phage chemotactic ability.

Reprogrammed pSLC Promote Bacterial Dissemination
via Macrophages In Vivo
We reasoned that a nude-mouse muscle-injury model with

a predominantly macrophage-containing inflammatory microen-

vironment would be useful to directly test whether pSLC pro-

mote bacterial dissemination via macrophages. To ensure that

all injected pSLC express GFP and all bacteria are inside the

cells, strongly positive GFP+ pSLC were FACS sorted and rein-

fected with ML 2 days before cell injection to the preinjured TA

muscles. Analyzing the fate of pSLC and iML at weeks 1, 2,

and 3 post-injection revealed that almost all GFP+ cells migrate

further away from the site of injection after 1 week and continue

to spread over time along the interstitial connective tissues in

the perimysium and to the skeletal muscle-dermal interphase

(SkMDIP) at week 3 post-injection (Figures 6A, S5, and S6). Strik-

ingly, iML were no longer confined to pSLC as most of iML were

detected within recipient non-GFP cells (Figures 6Aa, 6Ab, 6Ah,

and 6Aj). These data indicate that iMLwere efficiently transferred

from donor GFP+ pSLC to GFP� recipient tissue cells in vivo.

Both anti-PGL-1 antibody and acid-fast mycobacterial staining

confirmed these findings (Figures 6Aj and S5). These ML+

GFP� cells were identified as endogenous macrophages as

>90% of them were positive for macrophage markers F4/80,

CD11b, CD68, and CD206 (Figures 6Ac–6Aj and S5).

Inflammatory conditions in cardiotoxin-induced TA muscles

are known to bring a sequential appearance of macrophage

subpopulations, initially with CD68+ M1 subtype peaks at week

2 followed by a high CD163/CD206 M2 population that overlaps

within the M1 population at week 2–3 post-injury (Tidball and Vil-

lalta, 2010). These established conditions allowed us to correlate

GFP+ pSLC distribution with infiltrated macrophage subtypes

in injured muscles in a timely manner. Indeed, our findings

with serial tissue sections from infected GFP+ pSLC engrafted

mice at week 3 post-infection showed that CD68+, CD163+,

CD206+, or F4/80+ cells in the interstitial tissues were codistrib-

uted with GFP+ pSLC. Double immunolabeling with an antibody

to PGL-1 and macrophage markers confirmed iML within these

macrophages (Figures 6Aj, S5K, and S5L). Once ML transferred

from pSLC to macrophages, they appeared to transmit infection

to uninfected macrophages and thus facilitate ML spread via

these tissue macrophages along the connective tissues in

between muscle fibers and SkMDIP. Figures 6Aa, S5, and S6

clearly show examples illustrating the presence of iML within

numerous non-GFP recipient cells along the perimysium/con-

nective tissues and SkMDIP. Analysis of serial tissue sections
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Figure 5. Reprogrammed pSLC Secrete Immune/Growth Factors that Promote Macrophage Survival and Migration

(A) Protein arrays of CM from infected pSLC showing the secretion of indicated classes of soluble factors. Relative levels of released proteins were detected by

dot blot chemiluminescence and are presented as mean values from two arrays. Inset shows the number of detectable soluble factors released from CM from

control Schwann cells (Schwc-CM) and pSLC (pSLC-CM) with and without iML (+/�ML). Also see Figure S4.

(legend continued on next page)
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strongly suggests ML transfer from pSLC to both M1 and M2

macrophages (Figures 6 and S5).

pSLC Contribute to Granuloma-like Formation In Vivo:
Role in Bacterial Dissemination
Strikingly, infected pSLC that had migrated to the loosely

associated connective tissue areas within SkMDIP formed orga-

nized aggregates together with macrophages (Figures 6B and

S6). These organized aggregates resemble typical granulomas

seen in mycobacterial infections, both in murine models and

humans (Flynn and Chan, 2001; Bold and Ernst, 2009; Modlin

and Rea, 1988). Analyzing the cellular distribution of these GLS

revealed that pSLC contribute to a major cellular mass highly

organized into a spiral form of GFP+ cells and interposed

between infiltrated macrophages in both the core area and the

periphery of GLS (Figure 6B). Interestingly, a distinct distribution

of macrophage subpopulation was observed within these GLS:

the exteriors of the GLS are strongly positive for F4/80 (F4/

80+high) and CD206 populations, whereas the core areas are

weakly positive for F4/80 (F4/80+low) but strongly positive for

CD68+ cells with tightly packed multinucleated macrophages

(Figures 6Ba and S7). This phenotypic distribution of macro-

phages with F4/80+high/CD206+high and F4/80+low/CD68+high

corresponds to M1 and M2 subtypes, respectively (Figures 6B,

S6, and S7) (Mosser and Edwards, 2008). Anti-PGL-1 and Fite’s

staining (modified acid-fast mycobacterial staining) in serial

sections clearly showed that macrophages in both core and

periphery of GLS harbor large numbers of iML (Figures 6B, S5,

and S6). In contrast, we were unable to detect such GLS when

infected GFP+ Schwann cells were administered under similar

experimental conditions.

Release of ML-laden Macrophages from the
Granulomas
We found a significant shift in distribution of macrophages when

analyzed across granuloma-containing tissues within SkMDIP.

Figures 6B and 6C illustrate the distribution of pSLC and macro-

phages and their bacterial contents within the GLS in serial

sections taken from 250–300 mm apart tissue areas. In one end

of the GLS-bearing tissues, CD68+ cells with a high number of

iML were organized into the core area surrounded by GFP+

pSLC and bacterial laden F4/80+high/CD206+high macrophages

in the exterior, whereas in the other end, both CD68+ and

CD206+ macrophages were found migrating out of the tapered

aggregates of pSLC carrying iML with them (Figures 6B, 6C,

and S6). These data collectively suggest not only the transfer

of ML from pSLC tomacrophages but also themigration of these

bacterial-laden macrophages from the organized GLS.
(B) Soluble factors secreted by pSLC promote macrophage survival. Quantificat

media alone for up to 14 days is shown (B, top panel). IF of adherent F4/80+macro

shown (B, bottom panel). Magnifications: 203.

(C) Macrophages in indicated culture conditions in the sub G0/G1 cell-cycle phas

are presented as mean ± SEM from three experiments; *p < 0.001.

(D–G) pSLC secretory factors promote macrophage migration. (D) Schematic fo

taining viable pSLC. (E) Crystal violet dye staining of migrated macrophages throu

of migrated macrophages. (G) Effect of CC-chemokine inhibitor on macrophage m

as mean ± SEM from three experiments; *p < 0.01, **p < 0.001.
In Vitro Granuloma-like Formation by pSLC and
Macrophages
Next we developed an in vitromodel of GLS.We found that pSLC

tend to form aggregates at high density, and no leaked bacte-

ria were found outside the aggregates (Figure 7A). Real-time

microscopy revealed that uninfected macrophages migrated

into infected GFP+ pSLC aggregates when peritoneal macro-

phages were added (Figure 7B). Most of these macrophages

reached the core area of the GLS as early as 6 hr and 18 hr

and acquired ML from pSLC; bacterial transfer from some in-

fected pSLC to macrophages was also observed adjacent to

the GLS (Figures 7B). Some macrophages were also found to

contain GFP+ pSLC cell debris with the bacteria in them, sug-

gesting the phagocytosis of dead or apoptotic GFP+ pSLC by

macrophages (Figure 7B). However, only �0.04% of TUNEL-

positive cells were detected in these cell aggregates. Over

time, an increasing number of macrophages continued to

migrate and form larger GLS, and at this point, most of the ML

were transferred to macrophages (Figure 7C). These organized

GLS then gradually started to disintegrate and subsequently

release ML-laden macrophages (Figure 7D). Quantification of

bacterial transfer from pSLC to macrophages showed an effec-

tive transmission of infection to macrophages over time (Fig-

ure 7E). These findings suggest that chemoattractants released

from pSLC aggregates may have provided the right signals for

macrophage migration and GLS formation. Further studies on

dissection of regulatory signaling pathways involved may estab-

lish new links between host cell reprogramming and innate

phase immune responses during infection.

DISCUSSION

In this study, we provide evidence that leprosy bacteria perturb

dynamic mechanisms that normally preserve the lineage com-

mitment of adult Schwann cells and hence change the Schwann

cell fate to pSLCwithmesenchymal characteristics that promote

bacterial dissemination. The findings describe an unexpected

but natural exploitation of adult Schwann cell plasticity by ML

during infection. Once invaded, ML gradually ‘‘turn off’’ Schwann

cell lineage/differentiation-associated genes/TFs and ‘‘turn on’’

numerous embryonic/developmental genes and TFs of meso-

derm and neural crest. Such alterations in gene expression are

likely to disrupt the stoichiometry of transcriptional regulators,

leading to reprogramming of infected cell nuclei.

Of particular interest is the induction of TFs of the homeodo-

main/Hox family and EMT in Schwann cells in response to ML.

It is known that the fate of somatic cells can be altered by forced

expressions of both Hox and EMT genes (Mani et al., 2008).
ion of adherent F4/80+ and CD68+ macrophages maintained in pSLC-CM and

phages in the presence of pSLC-CM (right) andmedia alone (left) at day 7 is also

e that corresponds to apoptotic cells, as analyzed with propidium iodide. Data

r the macrophage transwell migration assay in response to CM or media con-

gh the membrane under the influence of indicated conditions. (F) Quantification

igration in response to pSLC-CM. The data shown in (F) and (G) are presented
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Figure 6. Reprogrammed pSLC Promote Bacterial Dissemination via Macrophages and Granuloma Formation In Vivo

(A) pSLC intimately associated with infiltrating macrophages and transferred infection effectively to recipient tissue cells in TA muscles. ML-infected GFP-pSLC

were administered into preinjured TA muscles of athymic nude mice, and transverse sections at days 14 and 21 post-injection were labeled with antibodies to

PGL-1 (ML in red; a and b) and various macrophage markers: F4/80 (c, g, and i), CD206 (e), CD11b (f), and CD68 (j). In (j), ML (red) were colocalized with CD68

(legend continued on next page)
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ML-infected cells upregulated several Hox and key EMT-associ-

ated TFs, including themaster regulators of EMT, Twist and Snail

(Polyak andWeinberg, 2009; Mani et al., 2008). Demethylation of

the promoter region of Twist1 in reprogrammed cells further

suggests that the change in cell fate accompanies the change

in epigenetic status. Reprogramming that follows the silencing

of Sox10, the master regulator of Schwann cell lineage and

differentiation/myelination (Finzsch et al., 2010; Jessen and Mir-

sky, 2005), directly correlates with significant DNAmethylation of

Sox10 in pSLC. On the other hand, no change in DNA methyla-

tion in the Sox2 promoter region (data not shown) suggests the

continuous expression of Sox2 in both parent Schwann cells

and pSLC. Thus, the silencing of Sox10 and maintaining or

induction of Sox2 may be critical for Schwann cell reprogram-

ming during infection.

In contrast to Sox2+/Sox10�pSLC, nerve injury-induceddedif-

ferentiated Schwann cells maintain Sox2+/Sox10+ and other

Schwann cell markers (Le et al., 2005). Safeguarding the

Schwann cell lineage markers, particularly Sox10, is critical for

an effective differentiation towards myelination during the

peripheral nerve regeneration process (Le et al., 2005; Finzsch

et al., 2010). This phenotypic difference together with the acqui-

sition of numerous mesoderm developmental genes distin-

guishes pSLC from nerve injury-induced dedifferentiated

Schwann cells. On the other hand, our previous studies have

shown that the initial interaction of extracellular ML with myelin-

ated Schwann cells induces demyelination, which in turn gener-

ates similar dedifferentiated cells (Rambukkana et al., 1997,

1998, 2002; Tapinos et al., 2006). ML appear to use this demye-

lination strategy to generate dedifferentiated Schwann cells as

they are highly susceptible to invasion and favorable for bacterial

colonization (Rambukkana, 2010). In the present study, we

mimicked such conditions by directly isolating dedifferentiated

Schwann cells from adult mouse peripheral nerves and showed

that, once invaded, iML reprogram these Schwann cells to

pSLC. It remains to be determined which mechanisms or

signaling are involved in this bacterial-driven cell reprogramming.

The important role of Erk1/2 MAPK signaling in inducing

demyelination without immune responses or lesions was first

demonstrated with leprosy bacteria as a model (Tapinos et al.,

2006). This finding was recently confirmed with inducible Raf-

kinase transgenic mice in which Erk1/2 activation in myelinated

Schwann cells was shown to induce demyelination and inflam-

matory responses (Napoli et al., 2012). Interestingly, the latter
(blue; arrowheads). Endogenous non-GFP tissue cells that have taken up ML a

macrophages of M1 and M2 phenotypes (e, i, and j). ML localization is confirmed

and arrowheads) show the formation of early smaller macrophage GLS. SkM

Magnifications: (a, d, e, f, and I) 103; (b, c, g, and h) 403.

(B) pSLC contribute to the formation of typical macrophage GLS in SkMDIP.

show distinct distribution and morphological features, as analyzed by antibodie

distribution of ML (red) within GLS was localized in parallel sections with antibod

infected tissues (d; also see Figure S7). Note the strongly F4/80+ cells in the per

cations are 203.

(C) Disintegration and release of bacterial-laden macrophages from granulomas

disintegration of both CD68 (a) and CD206 (e) macrophages from tapered GFP+ p

ofML as detected by anti-PGL-1 (red; b and c) and Fite’s staining (f). Arrows in the

acid-fast+ ML in migrating macrophages, respectively. Magnifications: (a–c) 103

See also Figures S5, S6, and S7.
activates p75, whereas reprogramming Schwann cells to pSLC

results in the loss of p75 (Figure 2). Also, unlike Erk1/2-induced

demyelination where transiently appearing inflammatory cells

promote peripheral nerve regeneration, pSLC acquired sustain-

able secretion of numerous macrophage chemoattractants even

after complete removal of ML. This capacity may facilitate con-

tinuous attraction of macrophages to pSLC in many tissues

during the early dissemination process. Although ML use Erk1/

2 signaling for Schwann cell manipulation (Tapinos and Rambuk-

kana, 2005; Tapinos et al., 2006), Erk1/2 alone does not appear

to contribute to reprogramming as the pharmacological in-

hibition of Erk1/2 did not abrogate the reprogramming events

(data not shown). This further suggests that the activation of

Erk1/2 alone does not cause Schwann cell reprogramming.

Although the lineage through which infected Schwann cells

are converted to pSLC is not known, this change may have

important benefits for a bacterium like ML that depends totally

on host cell functions for survival (Cole et al., 2001). Conversion

of Schwann cells to pSLC with mesenchymal characteristics

sets the stage for ML to use the reprogrammed cells as a vehicle

to spread the infection to distal tissues such as skeletal and

smooth muscles. We propose two major mechanisms by which

ML may use reprogrammed cells to promote bacterial dissemi-

nation (Figure 7H). First, ML take advantage of mesenchymal

stem cell-like properties of pSLC to migrate and spontaneously

differentiate into skeletal and smooth muscles under inflamma-

tory conditions and thus passively transmit infection to these

tissues. Second, using immunomodulatory properties of pSLC,

ML may use reprogrammed cells to create a secondary niche

by recruiting macrophages for further bacterial expansion and

dissemination.

Importantly, our findings in vivo showed that pSLC contribute

to macrophage granuloma formation, one of the pathologic

hallmarks of mycobacterial infections in murine models and

in patients with both leprosy and tuberculosis (Modlin and

Rea, 1988; Flynn and Chan, 2001). Although mycobacterial

granulomas are considered to be essential for containment of

infection, recent studies in zebrafish have suggested that macro-

phage granulomas may also promote mycobacterial dissemina-

tion during early infection (Davis and Ramakrishnan, 2009).

However, unlike other pathogenic mycobacteria, ML use adult

Schwann cells as primary nonimmune tissue cells for initial colo-

nization (Stoner, 1979). Once colonized, ML take full advantage

of Schwann cell plasticity to convert infected cells to pSLC
re shown with arrowheads (a) and are predominantly comprised of infiltrated

by acid-fast staining (red) in parallel sections (h). Insets in (e), (f), and (g) (arrows

: skeletal muscles (asterisks); SkMDIP: skeletal muscle-dermal interphase.

Migrated pSLC formed organized GLS with M2 and M1 macrophages that

s to F4/80 (a) or CD206 (see also Figure S7) and CD68 (b), respectively. The

y to PGL-1 (c) and by Fite’s staining (in purple), which detects mycobacteria in

iphery and fused and multinucleated CD68+ cells in the core of GLS. Magnifi-

. Sections distant from the granulomas (as in B) within the same tissues show

SLC aggregates (a–c) and the emigrating macrophages carrying large numbers

top and bottom panels show the pSLCwithmuch fewer iML and high content of

; (d–f) 403.
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Figure 7. In Vitro Granuloma-like Formation with pSLC Recapitulates Bacterial Spread via Macrophages

(A) Infected GFP+ pSLC form aggregates in culture (top panel) andML confined strictly within the aggregates (bottom left) and form bacterial clusters (red; bottom

insets), as detected by antibody to PGL-1 (red; bottom left), counterstained with DAPI (blue).

(legend continued on next page)
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with the capacity to produce chemoattractants and trophic

factors,which in turnpromotemacrophage recruitment, bacterial

transfer, and survival of infected macrophages (Figures 5, 6, and

7H). Interestingly, some of the immune factors/chemokines

released from pSLC are also known to foster granuloma forma-

tion (Qiu et al., 2001; Chiu et al., 2004). Collectively, these events

may facilitate pSLC to recruit macrophages and contribute to

form GLS. Our in vivo and in vitro analyses provide further

evidence that ML-laden M1 and M2 macrophages in the granu-

lomas contributed to spread the infection. Recent work showing

that the viruses used for reprogramming skin fibroblasts to plurip-

otent stem cells (Takahashi and Yamanaka, 2006) can promote

theefficiencyof nuclear reprogrammingvia activationof common

microbial-induced innate immune responses (Lee et al., 2012)

conceptually supports our study. Finally, our findings may have

far-reaching implications not only for host-pathogen interactions

but also for understanding the basic biology of adult-tissue cell

plasticity, reprogramming, and tissue regeneration.

EXPERIMENTAL PROCEDURES

Primary Adult Schwann Cell Cultures

Detailed experimental protocols for isolation and characterization of

mouse primary Schwann cells are described in the Extended Experimental

Procedures.

Infection with ML

Schwann cells were infected with ML according to our previous protocol (Ng

et al., 2000; Extended Experimental Procedures). In vivo-grown ML derived

from nude-mouse footpads were prepared as described previously (Truman

and Krahenbuhl, 2001; Lahiri et al., 2010), and both viable and nonviable ML

were provided by the Laboratory Research Branch of NHDP (Baton Rouge,

LA, USA).

Mice

These studies employed 4- to 6-week-old young adult CD-1 (ICR) (strain code:

022) mice (Charles-River Laboratory), GFP mice that constitutively express

eGFP (strain: C57BL/6-Tg [ACTB-EGFP] 1Osb/J, stock: 003291; Jackson

lab [Bar Harbor, ME, USA]), 6- to 8-week-old CD-1/nude mice (Charles-River),

and 4- to 6-week-old NOD-SCID mice (Jackson Lab). Sox2/GFP mice (Eminli

et al., 2008) were kindly provided by R. Jaenisch (Whitehead Institute, MIT,

Cambridge, MA, USA). Animals were maintained at the Rockefeller University

and University of Edinburgh animal facilities according to institutionally

approved protocols.

Flow Cytometry, Immunolabeling, Antibodies, and Microscopy

Flow cytometry, primary Schwann cell sorting, generation of clonal cells,

immunolabeling with primary antibodies, and imaging (Confocal, Deltavision,

and Time-lapse live-cell imaging) are described in the Extended Experimental

Procedures. Antibodies to Sox10, ML PGL-1, and Oct6 were gifts from
(B–E) Macrophages were added to infected pSLC aggregates, incubated for 6 h

macrophage markers F4/80 and CD11b. Shown are confocal images after 3D rec

(green; ML in red) by macrophages (blue) within GLS. At 18 hr, a high number of M

left panels). Occasional TUNEL+ cells (red; 0.04%) were also found in these GL

macrophages (red) was also seen outside GLS (B, bottom right). (C) At 72 hr, mo

these macrophages (arrows); note less PGL+ML in pSLC (left and middle panels

depict macrophages carrying both pSLC debries and ML (right panels). (D)

(E) Correlation coefficients of bacterial transfer from pSLC to macrophages over

macrophages (blue).

(F) The proposed model: Schwann cells in the adult PNS infected with ML underg

bacterial dissemination. BNB: blood nerve barrier.

Scale bars, (A) 5 mm; (B–D) 20 mm.
M. Wagner, A. Kolk, and D. Meijer respectively. A list of other antibodies

used is available in Table S2.

Schwann Cell Infection with ML and Reprogramming Protocol

FACS-sorted p75+ Schwann cells or clonal Schwann cells generated from

wild-type mice or Sox2-GFP mice were infected with ML as described (Ng

et al., 2000; Tapinos and Rambukkana, 2005). For the isolation of reprog-

rammed cells, infected cells were transferred to mesenchymal stem cell

media that allowed the selection of a pSLC population based on the cell-fate

change from p75+/Sox10+ cells to p75�/Sox10�. These cells were FACS

sorted with p75 antibody and subjected to detailed characterization (Extended

Experimental Procedures). pSLC were also transduced with CopGFP-CDH-

MSCV-cG reporter vector (System Biosciences, CA, USA) to obtain stable

CopGFP-expressing pSLC (referred to as GFP+ pSLC).

Gene and Protein Expression Analyses

Microarray, protein array, and qPCR analyses are detailed in the Extended

Experimental Procedures and Table S3.

pSLC Differentiation to Mesenchymal Tissues

We employed established protocols for bone and adipocyte differentiation

from mesenchymal stem cells (Pittenger et al., 1999). Myogenic differentiation

with C2C12 myoblasts was performed as described (Shi et al., 2004). Detailed

descriptions are available in the Extended Experimental Procedures.

In Vivo GFP+ pSLC Transplantation to Skeletal Muscles and

Dissemination of Infections

CD-1/nude mice (6–8 weeks, Charles-River) were preinjured with cardio-

toxin-1 24 hr prior to the administration of ML-infected GFP+ pSLC or GFP+

Schwann cells. Each indicated experiment was performed with 5–6 mice per

experimental group by repeating at least 3–4 times. Experimental details are

in the Extended Experimental Procedures.

Macrophage-pSLC Cocultures, Migration Assays, and In Vitro

Granuloma Formation

Detailed descriptions of experimental procedures of macrophage isolation

and cocultures and in vitro granuloma formation are described in the Extended

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, three tables, and one data file and can be found with this article online

at http://dx.doi.org/10.1016/j.cell.2012.12.014.
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Chargé, S.B., and Rudnicki, M.A. (2004). Cellular and molecular regulation of

muscle regeneration. Physiol. Rev. 84, 209–238.

Chiu, B.C., Freeman, C.M., Stolberg, V.R., Hu, J.S., Komuniecki, E., and Chen-

sue, S.W. (2004). The innate pulmonary granuloma: characterization and

demonstration of dendritic cell recruitment and function. Am. J. Pathol. 164,

1021–1030.

Cole, S.T., Eiglmeier, K., Parkhill, J., James, K.D., Thomson, N.R., Wheeler,
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