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Abstract

During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is
a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and
humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like
Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions.
However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to
isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral
cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we
show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can
isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function,
and to facilitate an evaluation of their utility in myelin repair.
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Introduction

Multiple sclerosis (MS) is a severe chronic disease that
affects more than 500,000 people in the EU alone and
approximately 2,500,000 people worldwide. Indeed, MS
represents the most frequent neurological disorder in young
adults and it is the second most important cause of paraplegia,
among other severe disabilities. To date, the only treatments
available to combat MS involve the use of immunomodulators
to reduce relapses, there are no treatments as yet that can
recover the loss of oligodendrocytes [1-9]. However, the
potential adverse effects of immunomodulators remain to be
fully studied, especially those affecting the oligodendroglial
lineage (demyelinating and/or limiting spontaneous
remyelination -see below-). However, recent advances have
raised hope in the possible use of neuroregenerative/
neuroreparative therapies to complement current treatments.

During embryonic development, oligodendrocyte precursor
cells (OPCs) originate in multiple but discrete foci along the
neural tube [10-14], thereafter migrating until they reach their
final destination where they differentiate into myelin-forming

oligodendrocytes. In the mature central nervous system (CNS)
of both healthy and sick people, there is a relatively large
number of OPCs (around 3-8% of the total cells in the mature
brain), which makes this a cell type of interest for cell therapies
to repair tissue damage in demyelinating diseases, like MS
[3,10,15-19]. Potential therapeutic approaches could include
attempts to enhance remyelination by pharmacological
manipulation of endogenous OPCs and/or by exogenous OPC
engraftment into the injured CNS (cell therapy) [18]. With
regards cell therapy, human embryonic stem cell-derived OPCs
(hESC-OPCs) or human induced pluripotent stem cell OPCs
(hiPSC-OPCs) seem to offer most promise [20-26]. However,
experimental data suggests that is not possible to differentiate
enough hiPSC derived oligodendrocytes for transplantation,
making it more feasible to obtain them from hESCs. However,
hESCs are in short supply and they are ethically controversial
[27-29]. All these problems may be avoided using endogenous
OPCs and by gaining a better understanding of their behavior
in order to enhance their remyelination potential, which is the
aim of the present study.
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In order to complement and improve the efficiency of
pharmacological manipulation of endogenous OPCs as a
therapeutic approach in patients with demyelinating diseases,
two preliminary steps must be fulfilled. First, it is necessary to
define the specific features of the different stages of OPC
development, and to improve our knowledge of their
proliferation and differentiation properties. As a result, we could
then identify key candidates that regulate these changes in
pathological brains.

To resolve these questions we have developed an efficient
protocol to isolate sufficient OPCs in order to perform biological
and pharmacological assays in vitro with a view to potentiate
their myelination/remyelination potential. We have applied this
method to postnatal and adult mouse brains, and to human
neurosurgical samples, allowing us to compare the efficiency of
our protocol with data obtained previously on newborn mice. In
the present work, we present the detailed protocol to obtain
OPCs from the postnatal (P15; [30]) and adult (P60 and older;
[31]) mouse cerebral cortex, a region with a high density of
these cells [32]. The OPCs obtained are viable, and they are
capable of migrating and differentiating into myelin forming
cells in vitro. Moreover, our protocol was more efficient than
other methods in terms of the number of OPCs isolated, such
as FACS, immunopanning and an Oligodendrocyte Selection
Kit (Pesheva WO/2006/067094 A1). Finally, we demonstrate
that our protocol is also useful to obtain functional human
OPCs from adult brain biopsies [30], which allows us to
compare the relative efficiency of our protocol in adult mouse
and human brain biopsies. Our protocol opens the door to the
performance of further in vitro assays to analyze the effects of
current MS drugs on endogenous OPCs, as well as for new
pharmacological developments to increase the physiological
capacities of human OPCs. This protocol has been
successfully employed in two published works [30,31] and in
several others currently submitted or in preparation.

Materials and Methods

Animals
The postnatal (P0, P15) and adult (P60, P180) CD-1 and

(P60) C57/BL6 mice used in this study were obtained from
Charles River Laboratories and they were maintained in the
animal facilities of the Hospital Nacional de Parapléjicos
(Toledo, Spain). The animals used at P0 served to compare
the data obtained in this study with that available elsewhere.
The plp-GFP transgenic mouse line [33-35] was also used here
because these animals express the gfp reporter gene under
the control of the plp regulatory sequences [34], facilitating the
detection of oligodendroglial cells and/or their isolation by
FACS [34].

Human biopsies
Human biopsies of tumor (resection of the safety margins but

not the tumor itself) and non-tumor origin (epilepsy, brain
traumatism, etc.) were obtained from the Neurosurgery Service
at the Hospital La Princesa (Madrid, Spain) and the
Neurosurgery Service at the Hospital Virgen de la Salud
(Toledo, Spain). All the samples obtained from human brain

cortex were from adult patients and the biopsies were
transported in an AQIX® RS-I (AQIX Ltd., Imperial College
BioIncubator) at 4°C as soon as possible to reduce cell
damage.

Ethics Statement
All animal experiments were carried out in accordance with

Spanish (RD223/88) and European (2010/63/EU) regulations,
and they were approved by the Animal Review Board at the
“Hospital Nacional de Parapléjicos” (SAPA001). All
experiments involving human samples were carried out in
accordance with the guidelines of the Research Ethics
Committee of Toledo (Spain), which approved our research,
and all the subjects provided their written informed consent.

Materials required for OPC isolation
Flasks were coated for 3-4 h in a tissue culture incubator

with poly-L-Ornithine hydrobromide (10 μg/ml, Sigma) diluted in
sterile distilled water (~ 7 ml/flask for 75 cm3 and 4 ml/flask for
25 cm3). After removing the coating solution, the flasks were
washed three times with sterile distilled water and dried
completely.

A papain-solution was prepared by diluting papain (0.9
mg/ml, Worthington Biochemical Corp.), L-cysteine (0.2 mg/ml,
Sigma) and EDTA (0.2 mg/ml, Roche) in Hanks balanced salt
solution without Ca2+ and Mg2+ (HBSS, Gibco).

The OPC medium used was Dulbecco´s modified Eagle´s
media with L-glutamine, 4.5g/L glucose and sodium pyruvate
(DMEM, Gibco), supplemented with 10% Fetal Bovine Serum
(FBS: BioWhittaker; Lonza) and a 1% Antibiotic Antimycotic
Solution (Sigma).

New method for postnatal and adult mice OPC isolation
To obtain primary OPC cultures, animals were first sacrificed

by cervical dislocation and/or carbon dioxide inhalation
(depending on their age), and they were then decapitated with
large scissors. The head of the animals was submerged briefly
in 70% ethanol to avoid contaminating the dissection with hairs
and other material, the skull was rapidly removed in a flow
hood after cutting the skin with a scalpel, and the brain was
removed with forceps (approximately 5–10 animals could be
processed at a time). The brains were placed in a 50 ml conical
tube with 10 ml of ice-cold HBSS (with Ca2+ and Mg2+) and
when all the brains had been recovered, the conical tube was
warmed for 5 minutes at 37°C in a water bath. A papain-
solution was then added and the brains were incubated at 37°C
in the water bath. Both the optimal concentration of the papain-
solution and the length of incubation at 37°C depend on the
age of the animals (Table 1). This step was crucial to facilitate
the elimination of the meninges, which are more strongly
attached to the parenchyma at adult stages than in neonatal
animals. The papain reaction was stopped by adding 20 ml of
HBSS (with Ca2+ and Mg2+) to the conical tube and placing it on
ice. Then brains were then removed one by one, placed in
HBSS (with Ca2+ and Mg2+) in a glass Petri dish, and the
remaining meninges and as much of the choroid plexus as
possible were removed with forceps under a dissection
microscope as fast as possible to avoid cell death. Once the
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meninges and choroid plexus had been removed, the olfactory
bulbs and the cerebellum were also eliminated with the
forceps, and the brain was split into two along the sagittal
midline axis, also removing the diencephalon.

The brain cortices were then placed in a clean petri dish in
10 ml of ice-cold HBSS (without Ca2+ and Mg2+). The absence
of these cations favors papain digestion. The tissue was then
dissociated mechanically, first with small dissecting scissors
and then by transferring the content of the petri dish into a 50
ml conical tube, warming it to 37 °C for 5 minutes and pipetting
the tissue through a serological plastic pipette. Small pieces of
tissue (approx. 2 mm3) were incubated with different dilutions of
papain-solution for distinct times in function of the age of
animal (Table 1). After enzymatic digestion, up to 30 ml (final
volume) of OPC medium and 300 μl of a DNAse solution (1%,
Sigma) were added to stop the papain digestion. The tissue
suspension was then triturated through a pipette several times,
incubated at 37°C for 5 minutes and centrifuged at 900 rpm for
10 minutes. The supernatant and the most superficial portion of
pellet (myelin debris) was removed and the remaining pellet
was resuspended in 10 ml of OPC medium (first with a
serological plastic pipette and then with an eppendorf p1000
pipette). The cell suspension was passed through a 100 µm
nylon mesh strainer (BD Biosciences) and the flow-through
was collected in a 50 ml conical tube. Finally, OPC medium
was added in function of the final number of flasks, and the
cells recovered were seeded in 75 cm2 Poly-L-Ornithine coated
flasks in a final volume of 10 ml per flask. The cells were
incubated at 5% CO2 and 37°C (the ratio animals/flask
depends on the age of the animal: Table 1), and after one day,
the OPC medium was changed to avoid cell death, replacing
the OPC medium with OPC medium supplemented with PDGF-
AA (10ng/ml, Millipore). For the differentiation assays, the
cultures should not be supplemented with PDGF-AA for more
than 10-15 days, at which time the supplemented medium was
again replaced with OPC medium. In the case of P0 cultures,
supplementation with PDGF-AA was unnecessary. The
medium in the flasks was changed every 2-3 days during
culture. After 15-20 days in culture for P15 brain cortices, or
25-35 days for P60 and P180 cortices, a monolayer mixture of
astrocytes, microglia and OPCs should be evident. At this point
the culture was ready to be shaken to obtain purified OPCs and
the proportion of isolated OPCs with respect to the total

number of glial cells in the primary cultures was assessed
(Table 1).

To purify OPCs, the culture flasks were removed from the
incubator, the flask caps were screwed on tightly and the flasks
were shaken overnight (18–20 h) in an orbital shaker at 250
rpm and 37 °C. Subsequently, the medium containing the
detached OPCs was collected rapidly and passed through a 40
μm nylon mesh strainer placed over a 50 ml conical tube. The
flow-through was collected and centrifuged at 900 rpm, for 10
minutes, and the pellet recovered was then resuspended in 10
ml of OPC medium. These cells were then plated on an
untreated plastic Petri dish at 37°C and left for 45 minutes,
allowing the microglial cells to attach but not the OPCs. The
unattached cells were collected and the process was repeated
again for 30 minutes, after which the OPC-enriched
supernatant was collected and centrifuged at 900 rpm for 10
minutes. The supernatant was discarded, and the pellet
containing the purified OPCs was resuspended in OPC
medium, counting the live cells using the Trypan blue exclusion
assay. Finally, the OPCs purified were plated in the
corresponding medium and at the concentration required by
the assay (see below), and they were incubated at 37°C in 5%
CO2.

Modifications to isolate OPCs from human brain
biopsies

The protocol described above was used to isolate OPCs
from human brain biopsies with minor modifications. Rather
than flasks of 75 cm2, 25 cm2 flasks were used with a final
volume of 5 ml OPC medium per flask, as opposed to 10 ml.
While this protocol worked with at least 0.5 grams of fresh
tissue, the best efficiency was obtained with 4 grams fresh
weight. Enzymatic digestion of the meninges and choroid
plexus was performed in the papain solution at a 1:2.5 dilution
for 10 minutes and the remaining tissue was digested at 1:10
for 15 minutes. Cultures reached confluency after 30-40 days
and the flasks were shaken at 230 rpm instead of 250 rpm.

Immunocytochemistry for OPC identification and image
acquisition

The identification of OPCs (Figure 1) was carried out after 24
hours in culture by dual fluorescence immunocytochemistry
using the A2B5 (diluted 1:10, Hybridoma Bank) and NG2

Table 1. Summary of the details and the protocol’s relative efficiency.

 Animals/ flask    Meninges removal Tissue digestion Number of OPCs/animal  OPCs %relative to P0    
% OPCs/total glial cells in cerebral
cortex

P0 3 PS (1:10) in HBSS, 5 min PS (1:10) in HBSS, 5 min 263,148±6,508 100% 12.9%

P15 5 PS (1:5) in HBSS, 5 min PS (1:10) in HBSS, 10 min 123,194±8,774 50% 6.3%

P60 5 PS (1:5) in HBSS, 10 min PS (1:10) in HBSS, 15 min 68,444±5,461 25% 3.8%

P180 5 PS (1:5) in HBSS, 10 min PS (1:10) in HBSS, 15 min 39,757±4,410 12% 2.02%

The enzyme dilution and the digestion time for the meninges/choroid plexus and the cerebral cortex depend on the postnatal stage analyzed. The number of OPCs isolated
was also stage-dependent and decreased with age. In addition, we indicate the %OPCs with respect to the cerebral cortex glial cells in the primary cultures. PS: Papain-
solution
doi: 10.1371/journal.pone.0081620.t001

Protocol Adult Oligodendrocyte Precursor Isolation
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(1:200 diluted, a gift from Prof. William Stallcup) cytoplasmic
antibodies, and the nuclear Olig2 antibody (diluted 1:200,
Millipore). To identify differentiated oligodendrocytes, dual
immunocytochemistry was carried out with the anti-CNPase
(1:200, Covance) and Olig2 antibodies. Images were obtained
on a SP5 resonant scanning confocal microscope (Leica
Microsystems).

Comparison with other methods
To address the efficiency of our OPC isolation protocol we

developed and characterized reproducible primary cultures of
cortical derived OPCs using two existing methods.

Firstly we used Fluorescence Activated Cell Sorting (FACS)
to isolate OPCs from the cerebral cortices of 5 plp-GFP
transgenic mice (P15, P60) that were dissociated with the
Neural Tissue Dissociation Kit T (Miltenyi Biotec; [36,37],
according to the manufacturer’s instructions. The dissociated
cells were filtered through a 40μm cell strainer and centrifuged
at 900 rpm to increase the OPC purity for the subsequent
FACS isolation. We then resuspended the cell pellet in 10 ml of
ice-cold 0.9 M sucrose solution diluted in HBSS and we
immunostained the cells with anti-A2B5 antibodies conjugated
to phycoerythrin (Miltenyi Biotec), following the manufacturer’s
instructions. Cells co-expressing A2B5 and GFP were sorted
on a FACS Aria TM flow cytometer (BD Biosciences) in HBSS
buffer with 2% FBS, 25 mM HEPES buffer solution (Fluka
Biochemika) and 5 mM EDTA (Roche). The OPCs were
collected in HBSS buffer and the live cells were counted using
the Trypan blue exclusion assay. OPCs were plated at the
desired density (see above) and incubated at 37°C in 5% CO2.

Secondly, we used an Oligodendrocyte selection Kit
(Pesheva WO/2006/067094 A1) according to the
manufacturer’s instructions.

Assays carried out on isolated OPCs
Once purified OPCs had been obtained, we could perform

different assays to study their behavior. OPCs were plated in
the corresponding medium at the appropriate concentration for
the assays performed.

For survival and differentiation assays [30], cells were
seeded (2x104 cells/coverslip) on Poly-L-lysine (Sigma, 0.1
mg/ml in borate buffer) and laminin (Sigma, 10 μg/ml in 1X
sterile PBS) coated coverslips. Differentiation medium was
used in these assays [38], containing: BME:F12 (1:1, Gibco)
supplemented with 100 μg/ml of holo-transferrin (Sigma), 20
μg/ml of putrescine (Sigma), 12.8 ng/ml of progesterone
(Sigma), 10.4 ng/ml of sodium selenite (Sigma), 25 μg/ml of
insulin (Sigma), 0.8 μg/ml of thyroxine (Sigma), 0.6% D(+)-
glucose (Normapur), 6.6 mM L-glutamine (Gibco) and 1%
Antibiotic Antimycotic Solution (Sigma). First, drops of medium
(50 μl) containing purified OPCs were seeded onto the coated
coverslips situated in multiwell plates and they were allowed to
attach for 1 hour before 450 μl of the corresponding medium
was added. The cultures were then maintained in an
atmosphere of 5% CO2 at 37°C for several days depending of
the origin of OPCs [30].

As previously reported [33,39,40], for chemotaxis and
proliferation assays the cells were seeded in Bottenstein and

Sato defined medium [41] consisting of DMEM with 1% FBS,
1% L-glutamine (Gibco), 0.03% BSA (Sigma), 1% antibiotic/
antimycotic Solution (Sigma), 0.3 ng/ml 3,3´,5-triiodo-L-
thyronine (T3, Sigma), 0.4 ng/ml thyroxine (Sigma), 16 µg/ml
putrescine (Sigma), 40 ng/ml sodium selenite (Sigma), 9.3
µg/ml insulin (Sigma), 0.1 mg/ml holo-transferrin (Sigma) and
62 ng/ml progesterone (Sigma).

Statistical Analysis
The data is shown as the mean ± SEM and it was analyzed

using SigmaPlot software (Jandel Scientific). A comparative
analysis was performed using a Student´s t-test (or Mann-
Whitney rank sum test). Statistical significance was set at
P<0.05: * P<0.05, ** P<0.01, *** P<0.001.

Results

When compared to their isolation from neonatal mice, one of
the principal problems to be addressed when isolating OPCs
from adult CNS tissue is the efficiency with which they are
obtained. However, with the protocol described here we were
able to obtain enough OPCs to perform different assays and to
study their biology.

Isolated OPCs from adult mice and human expressed
the same molecular markers as their embryonic and
early postnatal counterparts

OPCs isolated from the postnatal mouse cortex (P15, Figure
1 A-F and P60, Figure 1 G-L) using our protocol mostly showed
the typical bipolar morphology after 1 day in culture (Figure 1).
At the three stages analyzed (P0, P15, P60), OPCs were
double labeled with A2B5/NG2 antibodies and with A2B5/Olig2
antibodies, indicating that the vast majority of the cells isolated
were postnatal OPCs that expressed early markers of this cell
type (Figure 1 A-L). Like murine OPCs, OPCs isolated from
human biopsy tissue also expressed early OPCs markers
(Figure 1 M-R).

Strain- and stage-dependent differences in the number
of OPCs obtained

To determine the efficiency of our protocol, we assessed the
number of OPCs isolated from different mouse strains. A
significantly different number of adult (P60) OPCs was
obtained in the strains analyzed (Figure 2), with the highest
number of adult OPCs obtained from CD-1 mice and
significantly fewer OPCs isolated from the C57/BL6 strain and
plp-GFP transgenic mice (bred on a C57/BL6 genetic
background). In the light of these results, we decide to employ
CD-1 mice for further experiments.

We then assessed the efficiency of the procedure in CD-1
wild type mice in function of the age of the tissue used (Table
1). The largest number of OPCs was isolated from P0 brains
and from this stage onwards, the number of OPCs decreased
gradually from P15 to P180. Considering the total number of
OPCs at P0 stage as the reference value (100%), the
percentage of OPCs obtained at postnatal and adult stages
were approximately 50% (P15), 25% (P60) and 12% (P180:
Table 1). The number of OPCs was also expressed with

Protocol Adult Oligodendrocyte Precursor Isolation
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Figure 1.  Identification of OPCs.  (A-F) OPCs derived from p15 CD-1 mice after 24 hours in culture. OPCs were identified by dual
immunostaining for NG2+/A2B5+ (A-C) and Olig-2+/A2B5+ (D-F). (G-L) OPCs derived from p60 CD-1 mice after 24 hours in culture.
OPCs were dual-labeled with NG2+/A2B5+ (G-I) and Olig-2+/A2B5+ (J-L). (M-R) Identification of OPCs derived from human biopsies
after 24 hours in culture. Images show the co-expression of NG2/A2B5 (M-O) and Olig-2/A2B5 (P-R). Scale bar represents 25 µm in
A-F or 10 µm in G-R.
doi: 10.1371/journal.pone.0081620.g001

Protocol Adult Oligodendrocyte Precursor Isolation
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respect to the glial cells also isolated in primary cultures from
the cerebral cortex (Table 1) and a similar trend was observed.

This new protocol was more efficient than other
methods to isolate adult OPCs

To corroborate the efficiency of our new protocol, we
compared our results with other well-known techniques. Firstly,
we isolated OPCs from both postnatal (P15) and adult mice
(P60) using FACS technology [36,37], taking advance of the
plp-GFP transgenic mice. Using FACS, we were able to sort
OPCs defined by the co-expression of GFP and A2B5.
Consistent with our earlier results (see above), the number of
OPCs decreased with age: at P15 around 20% cells co-
expressed GFP and A2B5, while at P60 only around 2% of
cells displayed this molecular phenotype (Figure 3). However,
a large amount of cell death occurs during the sorting process
because less than 50% of the total cells sorted were alive on
the day after performing FACS. In adult specimens, and
despite using enzymatic digestion to reduce the processing
time ex vivo and the cell death, the total number of isolated
OPCs from cerebral cortices per animal was only around
10,000, which is <15% the number obtained with our protocol
(Table 2).

When OPCs were isolated using the Oligodendrocyte
Selection Kit (Pesheva WO/2006/067094 A1), the number of
OPCs purified from adult mice (P60) was clearly lower than
those obtained with our novel protocol. Despite introducing
enzymatic digestion of the meninges and choroid plexus to
diminish cell death, the number of live OPCs recovered by this
procedure was only 7,500/animal, which is approximately 10%
the number obtained with our original protocol (Table 2).

A large number of functional OPCs were obtained from
biopsies of adult human brain cortex

When we compared the efficiency of the isolation protocol in
terms of the % OPCs/gram fresh weight of the starting material,
significant differences were observed between the different
tissues used: mouse cerebral cortex, resection margins of
human brain tumors, non-tumor human brain tissue (Figure 4).
With our protocol we obtained approximately 100,000 OPCs/
gram fresh weight from adult CD-1 mice, 50,000 OPCs/gram
fresh weight from the resection margins of human brain tumors,
and 15,000 OPCs/gram fresh weight from non-tumor human
brain tissue (Figure 4). Significantly, we obtained more OPCs/
gram fresh weight from both types of human biopsies (non-
tumor and tumor) than from the cortex of the two other strains
of adult mice employed in this study: C57/BL6 (around 10,000)
and plp-GFP (around 5,000: Figure 4).

OPCs isolated from the different samples were
functional and useful for further biological assays

Differentiation assays demonstrated that at all the stages
studied, the OPCs isolated from the mouse cortex with our new
procedure were viable and could differentiate into mature
oligodendrocytes (Figure 5). OPCs isolated from adult mice
were cultured for 7 days in vitro in differentiation medium (see
methods) and they differentiated into mature, CNPase-Olig2
positive oligodendrocytes, as were also detected when P15
(Figure 5 A-F) and P60 (Figure 5 G-L) tissue was used. In the
case of human derived OPCs cultures, CNPase-Olig2 positive
cells could also be detected after 5 days in vitro in
differentiation medium (Figure 5 M-R).

The protocol that we describe here has already been used in
our laboratory and the OPCs isolated in this way have been

Figure 2.  Strain-dependent differences in the OPCs isolated from the P60 mouse cortex.  More OPCs were obtained from
CD-1 mice than from C57/BL6 or plp-GFP mice (C57/BL6 background). Values are the mean ± SEM and they were analyzed with a
t-test: *P<0.05, **P<0.01 and ***P<0.001.
doi: 10.1371/journal.pone.0081620.g002

Protocol Adult Oligodendrocyte Precursor Isolation
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shown to be functional and useful for assays of migration [31],
proliferation, survival and differentiation [30].

Discussion

We describe here a protocol that we have established to
obtain OPCs from the mouse cerebral cortex during maturation
and adulthood, as well as from human brain biopsies, fulfilling
an important gap in the field. The main difference with other

similar protocols is that we have incorporated a step to perform
a controlled enzymatic digestion of the meninges and choroid
plexus (Table 1), which dramatically decrease the time the
tissue spends ex vivo, thereby reducing the cell death in
mature/adult mouse and human tissues.

As a preliminary study, we compared the total number of
OPCs obtained from different mouse strains (CD-1, C57/BL6,
plp-GFP) as strain-dependent differences have been reported
for cortical demyelination in the murine cuprizone model [42],

Figure 3.  FACS sorting of adult OPCs from transgenic mice.  Histograms of unstained cells (A) and those stained with an anti-
A2B5-PE antibody (B). Histograms showing the relative percentage of the different cell populations (GFP-/A2B5+, GFP+/A2B5-, GFP
+/A2B5+) in experiments with no labeling (C) and with anti-A2B5-PE staining (D).
doi: 10.1371/journal.pone.0081620.g003

Protocol Adult Oligodendrocyte Precursor Isolation
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microglial-macrophage synthesis of tumor necrosis factor after
focal cerebral ischemia [43], protection against Theiler's murine
encephalomyelitis virus (TMEV; [44]), axonal regeneration [45]
and adult hippocampal neurogenesis [46]. Indeed, it was
recently shown that there are also strain-specific differences in
perinatal rodent oligodendrocyte lineage progression and its
correlation with that in humans [47]. Our results demonstrate
that the number of OPCs isolated from adult mice cerebral
cortices is strain-dependent, with the highest number of OPCs
isolated from the CD-1 strain.

To compare this protocol with current standard procedures to
isolate early postnatal OPCs, we used the cerebral cortex of P0
mice, particularly since the only data about the number of
OPCs purified from species has been obtained from the early
postnatal forebrain (Oligodendrocyte Selection Kit, Pesheva
WO/2006/067094 A1) or cerebral cortex [48], although some
data from the adult rat optic nerve is also available
(immunopanning: Barres WO/1997/007200; [49]). The
Oligodendrocyte Selection Kit employs a protocol that is based
on the selective adhesion of oligodendrocytes to Tenascin-R
coated onto special petri dishes under patent (Pesheva WO/
2006/067094 A1), and it has been established that using this
kit around 106 OPCs can be obtained from the whole forebrains
of four P2 mice. Thus, the number of OPCs obtained from early
postnatal mice forebrains (around 250,000/animal) is similar to
that obtained with our protocol. However, when the
Oligodendrocyte Selection Kit was used to isolate OPCs from
the adult (P60) cerebral cortex it was significantly less efficient
than our protocol. Indeed, approximately 10-fold more adult
OPCs were obtained with our protocol, representing an
additional advantage in terms of the number of animals that
must be sacrificed, a benefit that is consistent with the
Guidelines for the Care and Use of Mammals in Neuroscience
and Behavioral Research (2003) of the National Research
Council, as well as representing a saving in terms of time and

Table 2. Comparison of the methods available to isolate
OPCs with respect to our new protocol.

Stage CNS region Method
Number of
OPCs/animal

Relative
efficiency of our
present
protocol

P0 Forebrain
Oligodendrocyte
Selection Kit

250,000 Similar

 
Cerebral
cortex

MACS [48] 368,000 1.4-fold lower

P15 - - - -

P60
Optic nerve
(*)

Immunopanning [49] 2,000-2,500 30-fold higher

 
Cerebral
cortex

Oligodendrocyte
Selection Kit

7,500 10-fold higher

 
Cerebral
cortex

FACS 10,000 7-8-fold higher

P180 - - - -

(*) Data from the rat.
doi: 10.1371/journal.pone.0081620.t002

costs. The reduction in the adult OPCs obtained with the Kit
could reflect changes in the expression of tenascin-R in adult
animals with respect to that at perinatal stages.

Isolation by magnetic cell sorting (MACS; [48]), is not much
more efficient than our protocol (3.68 × 105 ± 9.17 × 104 cortical
OPCs/brain), and it can only be used to isolate OPCs from P0-
P7 mice and not from adult mouse or human tissue. FACS
would appear to be a viable alternative in mice, as it allows
small subpopulations of in vivo fluorescent cells to be isolated
from transgenic animals with excellent specificity [50].
However, in our experiments using plp-GFP transgenic mice,
fewer OPCs co-expressing both cell surface molecular markers
were obtained with this technique, limiting the use of the
isolated cells for further studies. One putative explanation may
be that during the pre-sorting and sorting steps, cells are
incubated for several hours in a non-natural microenvironment,
and they are subjected to enzymatic digestion, factors that are
associated with cell stress and cell death, as seen previously
for embryonic radial glia (69±15% live cells; [51]) and
embryonic stem cells (30% live cells; [52]). In summary, our
present protocol was around 7-fold more efficient than using
FACS.

Immunopanning is an expensive technique [53-55] that is
widely used to isolate OPCs from the rat CNS (Barres WO/
1997/007200; [49,56-61]), however there are currently no
antibodies suitable to select OPCs from mice with this
technique [62]. Nevertheless, a new immunopanning approach
using rat anti-mouse PDGFRα following a negative selection
with BSL-I has recently resolved this problem, at least for the
optic nerve [61]. A second approach that has been established
to purify OPCs from young mouse brains (P13) involves three-
step immunopanning using mouse anti-mouse Thy1.2, anti-
mouse GC and anti-mouse O4 antibodies [61]. However, as far
as we know, there are no data available regarding the number
of OPCs isolated from the adult mouse cerebral cortex to
compare the relative efficiency of this immunopanning protocol
with that of ours. The only data available regarding
immunopanning efficiency comes from the adult rat optic nerve
in which a many fewer OPCs can be isolated: a mere
1,000-1,250 OPCs per optic nerve (Barres WO/1997/007200;
[49]). As occurs with the Oligodendrocyte Selection Kit, the 30-
fold increase of the efficiency with our protocol can be
associated with a reduction in the number of experimental
animals that must be sacrificed.

There is no information available regarding the efficiency of
protocols to purify cortical OPCs from adult humans in order to
compare such data with our own results. The percentage of
OPCs obtained in the only study published to date on the
isolation of cortical OPCs indicates that only 1% of the cells
obtained were A2B5+ cells, and that the majority of the cells
obtained were identified as pre-oligodendrocytes or mature
oligodendrocytes [63]. In addition, the previous protocols to
isolate A2B5+ cells, which labels neurons, astrocytes and
oligodendrocytes in the human CNS [64,65], obtained those
cells from sub-cortical white matter [66,67] with an isolation
efficiency of 84% mature oligodendrocytes and only 16% OPCs
[66], or without specifying the CNS region [68]. Thus, as far as
we know, our protocol is the first to obtain OPCs from human
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adult brain biopsies as well as from adult mice. The capacity to
isolate OPCs from these tissues allows us to directly compare
data from adult mice with that from humans, which is extremely
useful given the difficulties in obtaining adult human brain
biopsies.

In the case of human OPCs, hESC-OPCs or hiPSC-OPCs
appear to be alternative sources of material for cell therapies.
Indeed, these cells represent a promising therapeutic option
[20-26] because they have been shown to be capable of
restoring locomotor function and they can increase myelination
in rats with spinal cord injury [22], as well as restoring
myelination in the hypomyelinated shiverer mouse brain
[21,23,25,26]. However, in preclinical trials using hESC-OPCs
(GRNOPC1), non-proliferative epithelial cysts occasionally
appeared that were confined to the injury site (Geron Corp.;
[22]). Moreover, experimental data suggests that the
differentiation of sufficient numbers of oligodendrocytes for

transplantation from hiPSCs or hESCs may have to address
technical and ethical problems [27]. Moreover, the use of this
kind of cell may lead to the formation of tumors, while the
transplantation of more differentiated cells will not necessarily
produce a pool of stem cells with the capacity to continually
supply newly differentiating cells if the transplanted cells die.
Such cell-based therapeutic agents for use in humans must
also be free of animal contaminants that may contain
pathogens or elicit an immune reaction after transfer to a host.
Also this type of cell transplant may also be subject to immune
rejection [28,29]. Such problems could be avoided by using
endogenous OPCs that could be isolated using the protocol
presented here.

In conclusion, we present here a “basic protocol” to obtain
adult OPCs from humans and mice. For the first time, our
protocol opens the way to obtain sufficient quantities of adult
murine and human OPCs to permit the effects of current

Figure 4.  Protocol efficiency.  Comparison of the efficiency of the protocol in obtaining OPCs from the adult mouse cerebral
cortex (CD-1, C57/BL6 or plp-GFP, P60) and from adult human biopsies (resection margins of tumors and non-tumor tissue). The
amount of OPCs/gram fresh weight from both types of human biopsy (non tumor and tumor) was higher than that from the brain
cortex from C57/BL6 and plp-GFP adult mice. The values are given as the mean ± SEM and they were analyzed with a t-test:
*P<0.05, **P<0.01 and ***P<0.001.
doi: 10.1371/journal.pone.0081620.g004
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Figure 5.  Identification of oligodendrocytes.  (A-F) Low (A-C) and high (D-F) magnification images showing cells from P15 CD-1
mice expressing Olig2 and CNPase, identified as oligodendrocytes after 7 days in culture. (G-L) Low (G-I) and high (J-L)
magnification images of cells from P60 CD-1 mice expressing Olig2 and CNPase, identified as oligodendrocyte after 7 days in
culture. (M-R) Images of cells from human biopsies expressing Olig2 and CNPase, identified as oligodendrocytes after 5 days in
culture at low (M-O) and high (P-R) magnification. Scale bar: 25 µm.
doi: 10.1371/journal.pone.0081620.g005
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treatments for MS, such as Natalizumab, Fingolimod or other
immunomodulators, on OPC neurobiology to be analyzed
(survival, proliferation, migration, differentiation) [30,31], as well
as the effects of new molecules that favor remyelination
together with the immunosuppresion. Moreover, this protocol
will facilitate the search for alternative therapeutic treatments
for demyelinating diseases with less adverse side effects,
advancing their testing in clinical trials. Finally, improving the
protocol to isolate murine and human adult OPCs will help
advance our knowledge about the use of these cells in cell
therapy. Information regarding cell therapy can be obtained
from murine models that mimic MS, such as experimental
autoimmune encephalomyelitis (EAE) and/or TMEV, avoiding
the ethical implications of using hESCs or hiPSCs [28]. Thus,
our protocol will undoubtedly contribute to advance our
understanding of the molecular and cellular mechanisms
involved in demyelinating diseases.
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