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Abstract

Abstract Chronic atrial fibrillation is associated with a shortening of the atrial action
potential duration and atrial refractory period. To test the hypothesis that these
changes are mediated by changes in the density of specific atrial K* currents, we
compared the density of K™ currents in left and right atrial myocytes and the
density of delayed rectifier K* channel o-subunit proteins (Kv1.5 and Kv2.1) in left
and right atrial appendages from patients (n=28) in normal sinus rhythm with
those from patients (n=15) in chronic atrial fibrillation (AF). Contrary to our
expectations, nystatin-perforated patch recordings of whole-cell K* currents
revealed significant reductions in both the inactivating (o) and sustained (Iksys)
outward K* current densities in left and right atrial myocytes isolated from patients
in chronic AF, relative to the g and Iksys densities in myocytes isolated from
patients in normal sinus rhythm. Quantitative Western blot analysis revealed that
although there was no change in the expression of the Kv2.1 protein, the
expression of Kv1.5 protein was reduced by >50% in both the left and the right
atrial appendages of AF patients. The finding that Kv1.5 expression is reduced in
parallel with the reduction in delayed rectifier K* current density is consistent with
recent sudgestions that Kv1.5 underlies the major component of the delayed
rectifier K™ current in human atrial myocytes, the ultrarapid delayed rectifier K*
current, lgyr. The unexpected finding of reduced voltage-gated outward K* current
densities in atrial myocytes from AF patients demonstrates the need to further
examine the details of the electrophysiological remodeling that occurs during AF to
enable more effective and safer therapeutic strategies to be developed.
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Atrial fibrillation is the most common chronic arrhythmia, present in 2% to 4% of
the population over the age of 60. It is responsible for considerable patient
discomfort, morbidity, and mortality.] Acute episodes of AF? and long-term



persistent AF® are both marked by significant shortening in the effective refractory
period of the atrium, shortening of the atrial action potential duration, and an
increased dispersion of refractoriness. Although the clinically observed changes
have been well documented and even reproduced in animal models,4 the
underlying cellular changes in the atrium are still very poorly understood.

Atrial repolarization and refractoriness are parameters determined by the balance
of inward Ca®" and outward K* currents. A decrease in action potential duration
and effective refractory period during AF, therefore, would be expected to reflect
(1) increased outward K1 current densities, (2) decreased inward Ca® current
densities, or (3) increased outward K* current density together with a decreased
inward Ca’* current density. As a beginning step to distinguish among these
possibilities, the present study was undertaken to evaluate the impact of AF on the
distribution and density of human atrial K* currents. Several recent articles have
now reported the normal distribution of human atrial K* current components in a
relatively comprehensive fashion, describing l-ro,s 6 /Kur,7 Ikr, and IKS.S One of the
primary K* currents involved in atrial repolarization is /cyr. This current has
recently been suggested to correspond to the expression of the Kv1.5 « subunit,7
which has been cloned by several groups from human atrium.? 10 Therefore, we
also examined Kv1.5 protein expression levels in membranes prepared from atrial
appendages obtained from patients in NSR, as well as from patients who have been
in AF until the time of surgery. The expression of another putative delayed rectifier
K* channel « subunit, Kv2.1, was also probed.

A combination of electrophysiological and biochemical techniques was used to
quantify the density of atrial Kt currents and the expression of specific delayed
rectifier K™ channel o subunits (Kv1.5 and Kv2.1). Contrary to our hypothesis, the
electrophysiological experiments revealed that voltage-gated outward K* current
densities are significantly reduced in myocytes isolated from patients in chronic AF
compared with the current densities in myocytes isolated from age-matched
control patients in NSR. In addition, we show that the attenuation in K™ current
density in myocytes from patients in AF is accompanied by a marked reduction in
the expression of Kv1.5 but not Kv2.1 protein, consistent with the previous
suggestions that Kv1.5 underlies the sustained component7 of the outward K*
current, lkyr, in human atrial myocytes.

Materials and Methods

Patients

Atrial appendages were obtained as surgical specimens from patients undergoing
cardiac bypass or cardiac transplantation surgery by following procedures approved
by the Institutional Review Board. Left and right atrial appendages were obtained
from 15 patients in chronic AF (>1 month at the time of surgery) undergoing mitral
valve repair and/or the Maze procedure.H The AF population included 9 men and 6
women (mean age, 56+3 years) (Tablel). Atrial appendages from two additional
male patients (ages 40 and 61 years) who had experienced frequent episodes of
PAF but were in NSR at the time of coronary bypass graft surgery were also
included in the electrophysiological study.
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Table 1.

Clinical Characteristics of Patients Undergoing Surgery for Atrial
Fibrillation

Control data were obtained from left and right atrial appendages obtained from 28
patients in NSR at the time of surgery (18 males, 10 females; mean age, 57+2
years). This population included 17 patients undergoing routine cardiac bypass
graft surgery, 6 transplant recipients (all with DCM), and 5 donors with nonfailing
hearts with normal left ventricular function that were not used for transplantation
because of the presence of underlying coronary artery disease or right ventricular
contusions. All of the control patients were in NSR at the time of surgery. None of
the bypass patients or nonfailing heart donors were on class lll antiarrhythmic
medications at the time of surgery; two of the transplant recipients were receiving
amiodarone at the time of transplant. None of the control patients had a
documented history of AF. The surgeries were performed between April 1995 and
January 1997.

Atrial Myocyte Isolation Protocol

For both patient groups, atrial appendages were collected in either blood or saline
and brought to the laboratory within 5 minutes of surgical excision. The tissue was
rinsed in a dissection buffer containing (mmol/L) NaCl 140, KCI 5.4, MgCl, 1.2,
HEPES 5, glucose 5, and BDM 30, pH 7.0. The tissue was cut into small chunks (<1
mm3) with scissors. Tissue chunks were transferred to a 25-mL Erlenmeyer flask
containing 10 mL of a Ca’"-free buffer with a composition similar to that of the
dissection buffer, but lacking the BDM. The flask was placed in a water bath (30°C
to 32°C) mounted over a magnetic stirrer. The minced tissue was washed three
times for 4 minutes with the Ca%*-free buffer, followed by 10 mL of dissection
buffer supplemented with 0.2% BSA, collagenase (Worthington type Il [144 U/mg], 1
mg/mL), and protease (Sigma type XXIV, 0.4 mg/mL). After 45 minutes of exposure
to enzymes, the supernatant was aspirated from the tissue and discarded. Fresh
collagenase solution in dissection buffer (0.75 mg/mL, without protease) was
added for an additional 10 minutes. The tissue was then triturated, and the chunks
were allowed to settle. The digestion buffer was aspirated with a transfer pipette
and centrifuged for 1 minute at 300 rpm (=18 g). The resulting supernatant was
then discarded, and the myocyte pellet was resuspended in an incubation buffer
containing (mmol/L) NaCl 118, KCl 4.8, MgCl, 1.2, CaCl, 0.5, KHPO4 1.2,
glutamine 0.68, glucose 11, pyruvate 5, and BDM 10, along with 1T umol/L insulin,
pH 7.2, and 1% BSA. The undigested tissue was placed in a fresh aliquot of
collagenase solution for further digestion. This procedure was repeated three to
five times, until the yield of viable myocytes began to decrease. After the final
collection, the pooled myocytes were again centrifuged to remove residual
collagenase/protease and resuspended in fresh incubation buffer. The myocytes
were kept in a open plastic beaker under a 100% O, hood, at room temperature,
until used, within 8 hours of isolation. Yields from this procedure were in the range
of 10% to 30% for Ca’*-tolerant myocytes. Only well-striated, bleb-free,
rod-shaped myocytes were used in the electrophysiological studies.

Perforated-Patch Whole-Cell Voltage- and Current-Clamp Recordings

The nystatin-perforated patch technique]3 was used to avoid dialysis of cytosolic
components and concomitant changes in ionic currents. Sylgard (Dow-Corning)
coated low-resistance electrodes (2 to 4 MQ, Corning 8161 glass; outer diameter,



1.65 mm; World Precision Instruments) were used as previously described.'* The
composition of the pipette solution was (mmol/L) potassium methanesulfonate
100, KCI 40, KoEGTA 5, MgCl, 2, and HEPES 10, pH 7.4. Nystatin was added to the
pipette solution at a final concentration of 100 ug/mL, from a stock solution made
fresh daily. Once nystatin was added to the buffer, the pipette solution was
sonicated (30 seconds) and used within 3 hours.

Nystatin-free pipette solution was placed in the tip of the pipette by capillary action
(3 to 4 seconds), and then nystatin-containing solution was backfilled in the pipette
immediately before use. Junction potentials were nulled immediately before seal
formation. After seal formation, increases in the capacitative response to a —10-mV
step pulse (from a —50-mV holding potential) occur as nystatin perforates the
patch. Cell capacitance and access resistance were checked throughout the
experiment by tuning the patch-clamp amplifier with small square-wave voltage
steps.

Only recordings from cells with low stable access resistance (<20 MQ) and high
seal resistance (>1GQ) were included in the present study. Typical access
resistance values were 9 to 12 MQ. Electronic series resistance compensation (40%
to 80%) was used to minimize voltage errors. With peak currents typically <1.6 nA,
voltage errors resulting from the uncompensated series resistance were typically in
the range 3 to 11 mV and were not corrected. No corrections were made for the
negligible leak currents in these experiments. Data acquisition was performed with
pClamp 6.0 software controlling either an Axopatch 200A or Axopatch 1C amplifier
(Axon Instruments).

All experiments were performed on cells superfused with test solutions in a 35-mm
culture dish mounted in a thermal stage controller (Bioptech AT system),
maintained at a temperature of 30°C to 33°C, and gassed with 100% O>. Solutions
for whole-cell experiments were changed via a six-port gravity flow system. To
keep the myocytes in position, the culture dishes were coated with laminin (Upstate
Biotechnology, Inc; 6 ug per well) before use. The control bath solution contained
(mmol/L) NaCl 135, KCI 5, sodium HEPES 5, sodium acetate 3, glucose 5, MgCl 1,
and CaCly 1, pH 7.40. Nifedipine (2 umol/L) was added to the bath solution to
suppress voltage-gated Ca®* currents. A holding potential of —50 mV was used to
inactivate the voltage-dependent Na* current.

Data analysis was performed using either the Clampfit module of pClamp or Origin
(Microcal Software). Outward K™ conductances were measured as the slope of the
current density-voltage relationship between the potentials of +10 to +70 mV. The
current-voltage curves of both g and Iksys were very linear (r>.98) over this range
of potentials. Current densities were determined by dividing current amplitudes by
the whole-cell capacitance. o was evaluated as the difference between the peak
outward current density and the current at the end of a 450-millisecond voltage
step (lksus)- Ik1 conductances were measured in the same manner, as the slope of
the I¢; density-voltage plot in the voltage range of —70 to —90 mV.

Western Blotting of Human Atrial Membranes

Membrane proteins from human atrial appendages were isolated using a previously
described method, developed, and used previously to obtain membrane proteins
from rat atrial and ventricular tissue.'® Briefly, rapidly frozen (—=80°C) samples of
human atrial appendages, obtained as described above, were homogenized at 4°C
in 10 vol of TE buffer containing 10 mmol/L Tris and 1 mmol/L EDTA, pH 7.4,
using a Tekmar Tissuemizer homogenizer. All solutions contained the following
protease inhibitors (mmol/L): iodoacetamide 1, phenanthroline 1, benzamidine 1,



and pefebloc 0.5, along with 4 ug/mL aprotinin and 2 ug/mL pepstatin. After
homogenization, nuclei and debris were pelleted by centrifugation at 1000g for 10
minutes, and the supernatant was retained. The pellet was resuspended in TE,
homogenized, and centrifuged again at 1000g for 10 minutes. The supernatants
from both low-speed spins were pooled and centrifuged at 40 000g for 10
minutes. Pellets were resuspended in TE containing 0.6 mol/L Kl and incubated on
ice for 30 minutes. After centrifuging at 40 000g for an additional 10 minutes, the
resulting pellets were twice more resuspended in TE and centrifuged at 40 000g.
The resulting pellets were then solubilized in TE containing 2% Triton X-100 on ice
for 1 hour. Insoluble material was centrifuged at 17 000g for 10 minutes. The
protein content of each of the solubilized membrane preparations was determined
using a BioRad DC protein assay kit. Solubilized membrane fractions were aliquoted
and stored at —20°C until used.

Sample aliquots containing 25 ug protein were fractionated on 10%
SDS-polyacrylamide gels and transferred to Hybond-PVDF membranes (Amersham
Life Sciences). The membranes were immunoblotted using anti-Kv1.5 (1:100 final
diIution)]6 or anti-Kv2.1 (1:250 final diIution)]7 antibodies. The membranes were
washed in blocking buffer (PBS containing 0.2% I-block [Tropix] and 0.1%
Tween-20) for 1 hour at room temperature and then incubated overnight at 4°C in
primary antibody solution prepared in PBS containing 5% normal goat serum, 0.2%
Triton X-100, and 0.1% NaNs3. After incubation with the primary antibody,
membranes were washed twice in blocking buffer for 10 minutes and subsequently
incubated for 1 hour at room temperature in alkaline phosphatase-conjugated goat
anti-rabbit IgG (Tropix) diluted 1:10 000 in blocking buffer. Membranes were then
washed three times (15 minutes) in blocking buffer and twice (2 minutes) in assay
buffer (Tropix, containing 0.1 mol/L diethanolamine and 1 mmol/L MgCly).
Membrane-bound secondary antibodies were detected using the CSPD (Tropix)
chemiluminescent alkaline phosphatase substrate and exposed to Scientific
Imaging Film (Kodak). Films were scanned with a Molecular Dynamics personal
densitometer and quantified with Image Quant software (Molecular Dynamics).

To facilitate comparison of samples for quantification purposes, an internal
standard (10 ng rabbit IgG) was added to each membrane protein sample before
the SDS-PAGE. Because the primary antibodies were raised in rabbits, the secondary
antibody used for the Western blot analysis was alkaline phosphatase-conjugated
goat anti-rabbit 1gG; thus, this antibody detected both the primary antibody of
interest and the rabbit I1gG. The densities of the K™ channel a-subunit bands and
the rabbit IgG internal standard were corrected for background, and the ratio of the
K™ channel « subunit to the IgG was calculated for each sample.

Statistical Analyses

Differences between groups were evaluated using unpaired Student’s t test.
Statistical tests were deemed to be significant for values of P<.05. All results are
presented as mean=SEM.

Results

Outward K* Currents Are Reduced in Chronic AF

In Fig 1A, raw K' current records from a myocyte isolated from the right atrial
appendage of a 56-year-old man in NSR are displayed. In Fig 1B{, similar current
records from a myocyte isolated from a nondilated right atrial appendage from a
59-year-old woman in chronic AF for >3 years are presented. Although the
myocytes were of similar size (104 pF in Fig TAU, 115 pF in Fig 1BY), both the



inactivating (fro) and sustained (/gsys) outward K current amplitudes were lower in
the myocyte from the patient in AF. Interestingly, the amplitudes of I¢j, evoked
during a step to —90 mV, were similar in both cells.

Figure 1.
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! : , K* currents from a right atrial
", 7R y myocyte isolated from a patient
A == e in NSR at the time of surgery.
i 1 SRS The voltage-clamp protocol is
View larger version: shown in the inset above the
In this page  In a new window current traces. A holding
Download as PowerPoint Slide potential of —50 mV was used to
inactivate the Na™ current, and
450-millisecond voltage steps were applied to test potentials ranging
from —90 to +70 mV in 20-mV increments; the interpulse interval was 3
seconds. B, The same protocol was used to elicit K" currents from a
myocyte isolated from a patient in AF for 3 years. C and D, The
mean+SEM current density-voltage relationship for o (C) and Iksys (D)
in all of the myocytes studied, over the potential range —30 to +70 mV.
Raw current amplitudes were divided by myocyte capacitance to derive
the current density. o was measured as the difference between the
peak outward current density and the outward Kt current density at the
end of the voltage step. Iksys was measured as the K™ current density at
the end of the voltage step. Electrophysiological data were obtained
from patients in NSR and from patients in chronic AF (>1 month at the
time of surgery). Left atrial myocytes were isolated from nine NSR
patients (n=14) and from eight AF patients (n=10). Right atrial myocytes
were isolated from 21 NSR patients (n=41) and from four AF patients
(n=9).

Similar electrophysiological recordings were obtained from myocytes isolated from
both the left and right atria of patients who were either in NSR at the time of
surgery (n=28 patients) or who had been in chronic AF for at least 1 month at the
time of surgery (n=11 patients). Current amplitudes were measured in individual
cells, and current densities were determined (as described in “Materials and
Methods”) to normalize for differences in myocyte size. The mean=SEM current
density versus voltage relations for g are shown in Fig 1C®, and the mean+SEM
current density versus voltage relations for the sustained outward current
measured at the end of the voltage step (jksys) are shown in Fig 1D". Note that
both components of the outward K™ current are reduced in myocytes isolated from
both the left and right atria of patients in AF.

Fig 2AU shows g7 traces from four different left atrial myocytes isolated from the
appendages of patients in NSR at the time of surgery (top) and traces from four
different left atrial myocytes isolated from the atrial appendages of patients in
chronic AF (bottom). The cumulative mean+SEM current-voltage relations for lg7 in
all myocytes are plotted in Fig 2BV.

Figure 2.



Ik1 density is increased in left
atrial myocytes of AF patients.
Ix1 was recorded as described in
the legend to Fig 11, at test
potentials of —90, —70, —50,
and —30 mV. A, Currents
recorded from four control
myocytes are shown in the top
panel; similar records from left
. : atrial myocytes (n=4) isolated
! - ;7 from chronic AF patients are
_ _ n shown in the lower panel. Note
Download as PowerPoint Slide normalized to cell capacitance
to facilitate comparison between
myocytes of different size. B,
Mean=+SEM I density versus voltage relations are plotted for left and
right NSR and AF myocytes. The number of myocytes in each group is
indicated in the Fig 11 legend. Note that /g7 density is increased in the
left atrial myocytes from AF patients; all other curves were
indistinguishable.

The Tablef summarizes the clinical characteristics and the drug treatments of the
AF patients. All but one of the patients in AF were simultaneously undergoing
mitral valve repair surgery, and because of the underlying valvular disease, dilation
of the left atria was obvious on visual inspection. The right atria of these patients,
however, were not significantly different from those of the control patients. In an
effort to discriminate between the effects of dilation and fibrillation on the K*
currents, the electrophysiological data obtained from myocytes isolated from the
left and right atrial appendages were analyzed separately.

For each myocyte, three K current components were evaluated: Hq, the
Ca2+—independent transient outward current; lcsys, the sustained outward K*
current; and 7, the inward rectifier K* current. The amplitudes of each current
component in each cell were measured and normalized to cell size (capacitance).
No significant differences in mean capacitance values (cell size) were evident
between left and right atrial myocytes isolated from patients in NSR or in AF. There
are no differences in o or Iksys (Fig 3BU) densities between myocytes isolated
from the left versus the right atrial appendages of patients in NSR at the time of
surgery. The densities of g and Igsys were, however, significantly reduced in left
and right atrial myocytes isolated from the atrial appendages of patients in AF (Fig
3BV). In these patients, frg was reduced (compared with control values) by 61% in
myocytes isolated from the left atrial appendage and by 66% in myocytes isolated
from right atrial appendages. Although the density of g was reduced, there were
no significant differences in the kinetics or voltage dependences of g activation or
steady state inactivation in atrial myocytes isolated from patients in NSR compared
with those isolated from patients in chronic AF. As is also evident in Fig 3B{,
compared with control values, lksys was reduced by 53% in the left atrial myocytes
and by 44% in the right atrial myocytes obtained from patients in AF.

Figure 3.

Mean+SEM K™ current densities in atrial myocytes isolated from the left
and right atrial appendages of patients in chronic AF. A, Mean+SEM
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groups. B, Mean+SEM outward
K conductances (gK outward)
for o and Iksys in left and right
atrial myocytes from NSR and AF patients are plotted. Both ho and Iksys
are systematically reduced in myocytes isolated from either the left or
right atrial appendages of patients in chronic AF. g and Igsys were
determined as described in the legend of Fig 1. The percent reductions
in current densities, determined relative to controls, are indicated within
the bars of the AF myocyte groups. C, Inward rectifier K™ conductances
(gK inward) were determined as the slope of the current density-voltage
relationship for test potentials of —70 to —90 mV. Although /7 density
is not different in right atrial myocytes isolated from NSR and AF
patients, there is a significant (P<.01) increase in lg7 density in left atrial
myocytes from AF patients compared with NSR left atrial myocytes. The
percent change from the control current density is indicated within the
bar. Significant differences in all panels are indicated by asterisks
(*P<.05, **P<.01).
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In contrast to the marked reductions in outward K* current densities, there was a
significant increase (106%) in Ik density in myocytes isolated from the left atrial
appendages of patients in chronic AF (Fig 3C1). The increased /g7 density results in
a significantly more positive holding current (at =50 mV) in the left atrial myocytes
of chronic AF patients, relative to the left atrial control myocytes (P<.01).
Mean=SEM holding currents were 0.9+0.3 pA (n=10) and —12.7+2 pA (n=14) for
left atrial AF myocytes and left control myocytes, respectively. These observations
suggest that resting membrane potentials may be more negative in left atrial
myocytes from patients in chronic AF. No significant differences were evident,
however, in Ix7 densities or holding currents in myocytes isolated from the right
atrial appendages of patients in chronic AF compared with the control patients (see
“Discussion”).

Do the Observed Changes in K* Current Density Simply Reflect Atrial Myocyte
Hypertrophy?

Because of concerns about the impact of atrial myocyte hypertrophy (which
underlies the observed atrial dilation noted above) on the density of atrial K*
current components, the density of each current component was evaluated as a
function of cell size (whole-cell membrane capacitance). In Fig 4 U, the conductance
values for o (Fig 4AV), Iksus (Fig 4BU), and J¢; (Fig 4CV) in individual cells are
plotted versus whole-cell membrane capacitance. Although there was a trend
toward smaller o and Iksys densities in larger myocytes, it is evident that the



densities of both outward K' current components were lower in the myocytes
isolated from the atrial appendages of patients in AF across the entire range of
capacitance values. To further evaluate the effects of hypertrophy on the measured
current densities, the data from individual cell measurements were subdivided into
three groups: 19 to 75 pF, 76 to 125 pF, and >125 pF. When myocytes are grouped
in this way, the hypertrophy associated with AF is also evident. For example, 5
(32%) of 19 myocytes from patients in chronic AF were >125 pF, whereas only 7
(13%) of 55 myocytes from patients in NSR were in this group. Nevertheless, and as
clearly illustrated in Fig 4, these analyses revealed that the mean reductions in o
(Fig 4D V) and Isys (Fig 4EV) densities were similar for myocytes in all three groups
(19 to 75 pF, 76 to 125 pF, and >125 pF).

A o - Figure 4.
':'" S I : i i Reductions in outward K*
8 . 3 current density cannot be
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. R e . I I hypertrophy. A, Individual

: myocyte fro conductance (gHo)
oL . values are plotted as a function
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Download as PowerPoint Slide . . .
isolated from patients in NSR or
in AF at the time of surgery. B,
Iksus conductance (glksys) values are plotted as a function of myocyte
size for the same individual myocytes plotted in panel A. Note the trend
for lower o and Iksys conductances as a function of myocyte
capacitance (size). Note also that at each capacitance value, the outward
K™ conductance was reduced in the myocytes from the AF patients
relative to the control patients. C, /g1 conductance (glk7) values for the
same groups of myocytes as in panels A and B are plotted as a function
of myocyte size (capacitance). D, E, and F, Individual gho (D), g/ksus (E),
and gl (F) values in panels A through C were binned into three groups
(19 to 75 pF, 76 to 125 pF, and >125 pF), and the mean=SEM
conductance values for the control and AF myocytes in each group are
plotted. The number of myocytes in each group is shown within the
bars; the percent change from control mean is plotted above the AF
bars. Significant differences in all panels are indicated by asterisk
(*P<.05, **P<.01). Importantly, the reductions in gho and glksys in the
AF myocytes were similar in each capacitance group. In contrast to these
results, gl was largest in the group of smallest AF myocytes.

Interestingly, for Ig1, the same general trend, ie, lower current density in larger
myocytes, is evident (Fig 4C1). As shown in Fig 3C1, there was an increase in mean
Ik1 density in the left, but not right, atrial myocytes of AF patients. When the
current densities were analyzed as a function of myocyte size, it became clear that
the increase in Jgj density was only significant in the smallest group (19 to 75 pF)
of atrial myocytes (Fig 4F ). The significance of this observation is not clear.

Do Changes in K* Current Density Precede Chronic AF?

To determine whether the changes in K' current density occur as a result of
chronic AF or whether they might be factors precipitating the rhythm disturbance,



we also evaluated K* current densities in two groups of patients who were in NSR
at the time of surgery but who had cardiac disease and an increased risk for the
development of AF. Comparison of results obtained in atrial myocytes isolated from
nonfailing hearts (the nonfailing donor hearts and normal surgical patients
undergoing bypass surgery) and the atrial myocytes isolated from 6 patients with
end-stage heart failure (DCM) who received a heart transplant but who were in NSR
at the time of transplantation revealed no significant differences in fo, Iksus, Or K1
densities (Fig 5AL). K* current densities were also examined in myocytes from two
patients who had experienced periodic episodes of PAF but were in NSR at the time
of bypass surgery. Similar to the results in Fig 5A{, these experiments revealed no
significant differences in o, Iksys, Or Ik1 densities in PAF myocytes compared with
control myocytes (Fig 5BU). Taken together, these results suggest that the changes
in K current densities described here reflect the effects of chronic AF (see
“Discussion”).
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Download as PowerPoint Slide transplant recipients (n=6) with
DCM that were in NSR at the
time of transplantation. There
were no significant differences between groups. B, o, Iksus, and i1
conductances of myocytes (n=9) from patients (n=2) diagnosed with PAF
that were in NSR at the time of bypass surgery are compared with the
HOo, Iksus and Igj conductances in the control myocytes (nonfailing and
DCM). No significant differences in any of the conductances were evident
in these experiments.
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Kv1.5 Expression Is Reduced in Chronic AF

To determine if there were corresponding reductions in the expression of
voltage-gated K* channel a-subunit proteins, Western blot analysis was performed
on membrane proteins prepared from the left and right atrial appendages isolated
from the same patient populations used for the electrophysiological studies.
Typical Western blots with anti-Kv1.5 and anti-Kv2.1 K* channel a«-subunit-
specific antibodies are presented in Fig 6Al and 6By, respectively. To facilitate
comparisons among samples and between blots, the density of the specific K*
channel x-subunit bands was determined relative to an internal standard (rabbit
IgG), as described in “Materials and Methods.”

Figure 6.

Western blots reveal that Kv1.5, but not Kv2.1, expression is decreased
in the membranes of myocytes from patients in AF. Membrane proteins



were isolated from the left and
A right atrial appendages of
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Download as PowerPoint Slide patients in AF at the time of
surgery. A fixed amount of
membrane protein (25 ug) was added to each lane. Molecular weight
markers are indicated on the left side of the blots. The bands labeled
“internal standard” denote the position of the rabbit IgG internal
standard added to each membrane protein sample. The anti-Kv1.5
antibody was used at a dilution of 1:100, and the anti-Kv2.1 antibody
was used at a dilution of 1:250. Bound antibodies were detected with a
chemiluminescence assay (see “Materials and Methods”).
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As illustrated in Fig 67, Kv1.5 and Kv2.1 are readily detected in membrane
preparations from left and right atrial appendages of patients in NSR. Western blots
of membrane proteins isolated from the left and right atrial appendages of two
patients are illustrated in the left panels of Fig 6. The Kv1.5 and Kv2.1 bands and
the internal standard are indicated. In the blot of right atrial membrane proteins
from one of the patients, a prominent band at =80 kD is evident. The identity of
this band is not known. These figures show that the expression levels of both Kv1.5
(Fig 6A") and Kv2.1 (Fig 6Bf) are indistinguishable in the left and right atrial
appendages of patients in NSR. Similar results were obtained in experiments
completed on atrial membrane preparations from four other patients in NSR.

Western blots with the anti-Kv2.1 antibodies revealed that Kv2.1 expression in the
left and right atrial appendages of two AF patients was not significantly different
from that of control patients (Fig 6B1). Quantitative analysis of the Western blots
with the anti-Kv2.1-specific antibody in membrane preparations from the left and
right atrial appendages of four other patients in AF confirmed these results, and
mean+SEM normalized data are presented in Fig 7{. For patients in AF, the mean
density of Kv2.1, determined relative to the standard, from either the left (n=6) or
the right (n=6) atrial appendages was not significantly different from that for the
control patients (n=6).

2 154 — Figure 7.
< [l Controls
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g 3 :z: ,L,;:“ Densitometric analysis shows
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x
S | and Kv2.1 bands were
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0.04 1.5 Y determined on Western blots

View larger version: such as those shown in Fig 61.



In this page  In a new window Films were scanned into a
Download as PowerPoint Slide Molecular Dynamics
densitometer using Image

Quant. After background subtraction, the ratio of the density of each
subunit band was normalized to the density of the internal standard
(rabbit IgG) added to each sample. The mean+SEM relative density of the
Kv1.5 and Kv2.1 ax-subunit proteins in right and left atrial appendages
from the AF patients (n=6) are plotted separately. Note that there is no
significant difference in Kv1.5 or Kv2.1 expression levels between left
and right atrial appendages from AF patients. In both left and right
appendages, Kv1.5 expression is decreased; Kv2.1, however, is
unaffected. Statistically significant changes are marked with asterisks
(*P<.05, **P<.01). The percent change from control is indicated within
the bar.

In contrast to the results with Kv2.1, Kv1.5 expression levels were clearly reduced
in membranes prepared from the left and right atrial appendages of patients in AF
(Fig 6A1). Similar to the control hearts, however, there is no significant difference
in Kv1.5 expression between the left and right atrial appendages from AF patients.
Western blots of membrane proteins from the atrial appendages of two AF patients
are displayed in the right panels of Fig 6Af. Similar results were also obtained in
Western blots performed on atrial appendage membrane preparations from four
other AF patients. Kv1.5 densities were determined in all samples and normalized
to the internal IgG standard; mean+SEM normalized data are presented in Fig 71.
The mean density of Kv1.5 was reduced by 57% in the left atrial appendages (n=6)
and by 51% in the right atrial appendages (n=6) of patients in chronic AF.

Discussion

Outward K* Currents Are Reduced in Chronic AF

In the chronic model of AF developed in goats by Allessie and coIIeagues,4 18 it was
demonstrated that induction of AF for extended periods was directly responsible
for the increased duration of subsequent episodes of fibrillation. In addition, within
1 week of pacing-induced fibrillation, AF was self-sustained in 10 of 11 animals.
Over this T-week period, the action potential duration and effective refractory
period were decreased, and the median activation interval (F-F) was also reduced.
The observed changes in all of these parameters were statistically significant and
were fully reversible upon cardioversion and removal of the external pacing
stimulus. These results led the authors to suggest that rapid electrophysiological
remodeling occurs in AF as a direct result of the fibrillatory process. Recent studies
in patients have shown that a rapid reduction in atrial effective refractory period is
also associated with the initiation of AF in humans.’

Because the reductions in refractory period and action potential duration are
associated with the onset and maintenance of chronic AF, we hypothesized that
outward K* current densities would be increased in atrial myocytes isolated from
patients in chronic AF compared with myocytes isolated from patients in NSR.
However, the results presented here clearly demonstrate that this hypothesis is
incorrect. Rather, our results demonstrate that o and Isys densities are
significantly reduced in myocytes isolated from both the left and right atrial
appendages of patients in chronic AF.

By comparing the K* current densities of patients at increased risk for the
development of chronic AF with normal patients, we have attempted to determine



whether the observed reduction in K* current density in patients with chronic AF is
a result of the disease process or a pathological change that precedes the onset of
chronic AF. As demonstrated in Fig 51, there was no significant difference in any of
the K current densities in myocytes isolated from patients with either DCM or PAF
relative to myocytes isolated from control patients. Importantly, from a clinical
perspective, both groups are at a significant risk for the development of chronic AF.
Thus, our results strongly suggest that it is the chronic AF, per se, that causes the
reduction in outward K* current densities.

Effects of AF on Atrial K' Currents Are Not Due to Atrial Dilation or
Hypertrophy

In the AF patient population studied here, substantial left atrial dilation was present
in nearly all of the AF patients (Tablef), whereas there was no significant right
atrial enlargement in most of these patients. Le Grand et al'? demonstrated that
outward K current densities were reduced in myocytes isolated from dilated (but
not necessarily fibrillating) atria. In the present study, it is evident (Fig 41) that an
increase in atrial myocyte size (capacitance) is correlated with a decreased density
of all K* current (ko, lksus, and i) components examined. However, we note that
ho and iksys densities were reduced to a similar degree in myocytes isolated from
both the dilated left and normal-sized right atrial appendages. In addition,
significant reductions in o and Iksys densities were evident in all AF myocytes,
regardless of cell size (Fig 41). Taken together, these results suggest that
significant reductions in g and Iksys are a direct result of chronic AF, per se, and
are not simply the result of atrial dilation and/or increase in myocyte size. Thus, it
seems apparent that chronic AF, in the absence of visually or echocardiographically
evident atrial dilation, is associated with a reduction in outward K* current density
similar to or greater than that caused by atrial dilation alone.

Interestingly, the reduction in Jg7 density with increased myocyte size (capacitance)
appears to be attenuated in left atrial myocytes isolated from patients in chronic
AF. On average, 1 density was 106% greater in left atrial myocytes from fibrillating
atria (P<.01), whereas there was no significant difference in lx; density in myocytes
isolated from the right atrial appendages of patients in AF compared with those
isolated from patients in NSR. An increased /g density may result in more negative
resting potentials and earlier repolarization in the left atrial myocytes of chronic AF
patients. To better understand the significance of this observation, further
experiments aimed at determining and comparing resting membrane potentials and
Ba’"-sensitive Ik1 current densities in atrial myocytes isolated from both normal
and chronic AF patients are warranted.

AF Is Associated With a Reduced Expression of Kvi.5, But Not Kv2.1, a
Subunits

Western blot analysis of Kv2.1 a-subunit expression in atrial appendages from
control patients in NSR and from patients in chronic AF revealed that there was no
significant difference in the expression of Kv2.1 between these two patient groups.
This observation suggests that the observed reduction in lgsys is not due to a loss
of K* channels containing Kv2.1 « subunits. The simplest interpretation of these
results is that Kv2.1 & subunits may not contribute importantly to the outward K*
currents in isolated human atrial myocytes. In support of this hypothesis, we have
found that very little tetraethylammonium-sensitive current is apparent in human
atrial myocytes (authors’ unpublished observation, 1996). The currents produced
by heterologous expression of Kv2.1, however, are tetraethylammonium

sensitive.20



It has been shown that /gy, is a primary component of the human atrial delayed
rectifier K* current,Z] and it has been suggested that Kv1.5 underlies this current.’
Consistent with the latter hypothesis, recent immunohistochemical studies have
also demonstrated Kv1.5 protein expression in human atrium.'? Previous studies in
other preparations have also shown that the expression of Kv1.5 can be modulated
by a variety of influences, including glucocorticoids,22 thyrotropin-releasing
hormone,]6 and, intriguingly, membrane depolarization.23 Elevated extracellular
K™ (50 mmol/L), for example, specifically suppressed Kv1.5 (but not Kv1.4 or
Kv2.1) expression in cultured GHs cells.”> These results were interpreted as
suggesting that variations in membrane potential (or any changes in electrical
activity) can regulate Kv1.5 expression.23

The results presented here demonstrate that Kv1.5 expression is also reduced in
the atria of patients in AF, by 57% and 51% in the left and right atrial appendages,
respectively. Interestingly, these values closely parallel the reductions in Jgsys of
53% and 44% in the myocytes isolated from the left and right atrial appendages,
respectively, of patients in AF. Thus, the decrement in Jksys closely paralleled the
reduction of Kv1.5 expression. This close correlation between the reduction in
delayed rectifier K current density and the reduction in Kv1.5 expression supports
the hypothesis that the Kv1.5 o« subunit contributes importantly to the delayed
rectifier K* current in human atria.”

The activation interval (FF interval, or the interval between subsequent activations
of the atria) is substantially reduced in the fibrillating atria (typically <200
milliseconds?* versus 600 to 800 milliseconds [normal]). Thus, atrial myocytes
from the fibrillating atria must be in a depolarized state for a greater fraction of the
time. Indeed, monophasic action potential recordings from patients in AF
frequently demonstrate incomplete repolarization.25 It seems reasonable to
speculate, therefore, that the downregulation of Kv1.5 expression observed here
results from the altered electrical activity of the atrium.

Effects of AF on Other K' Currents

Even if the hypothesis that Kv1.5 underlies igyr is correct,7 it is clear that there are
other currents that contribute to the total outward K* currents in human atrial
myocytes. Ik, for example, has been documented in human atrial myocytes.26
Importantly, this current is the target of all presently approved class Il
antiarrhythmic drugs. H-erg has recently been identified as the genetic locus of
long QT227 and has been shown in heterologous expression systems to produce
currents that closely resemble lKr,27 28 suggesting that H-erg underlies I, It will
be of interest, therefore, to determine if /¢, densities and H-erg expression are also
affected by AF. Clearly, such studies will require the availability of specific
anti-H-erg antibodies.

The results presented here also revealed that the density of Ho is significantly
reduced in human atrial myocytes isolated from patients in AF compared with
age-matched control patients in NSR (Figs 1 through 410 1 0 ft). Recent studies have
demonstrated that Kv4.3 message levels are high in the human ventricle, leading to
the suqggestion that Kv4.3 is a likely o subunit contributing to ho in the human
heart.?® Further studies, aimed at confirming the presence of the Kv4.3 protein in
human atria and at examining the impact of AF on the expression of this subunit,
are clearly warranted. These experiments will require the availability of specific
(anti-Kv4.3) antibodies.

Implicit Role for a Reduction in Inward Ca®** Current Density



In the studies of Le Grand et al'? on electrophysiological changes in dilated human

atria, a greater reduction in Ca2+ current density was detected (75%) relative to the
reduction in outward K" current density (60%). Changes in Ca®" current density
could likely explain the shortenings in action potential duration and effective
refractory period that are observed during chronic AF. Interestingly, Ca®" channel
blockers have been found to prevent both the changes in effective refractory
period30 and contractile dysfunction®' that accompany short episodes of AF. This
strongly suggests that Ca®" overload may be the proximal mechanism initiating
both the changes in Ca®" current density and the eventual reduction in K™ current
density. Intriguingly, although we have shown that there was no difference in K*
current density between our control atrial myocytes isolated from nonfailing hearts
and those isolated from the explanted hearts of transplant recipients in NSR with
DCM, Ouadid et al*? demonstrated that atrial myocytes from transplant recipients
had significantly lower peak Ca’™ current densities (2+1 pA/pF) than did myocytes
isolated from a control population of bypass patients (12+4 pA/pF). Because
patients in heart failure have an increased incidence of AF, the present study
supports the hypothesis that a reduction in Ca®™ current density may be involved in
the initiation and/or maintenance of chronic AF. Clearly, studies focused on
examining human atrial myocyte Ca®" current densities and Ca’* channel
expression in patients with chronic AF and in patients predisposed to develop AF
would be of great interest.

Summary

AF is a complex multifaceted disorder. Although sometimes tolerated for long
periods, AF causes substantial discomfort and significantly increases the risk of
thromboembolic events. Although AF can be induced briefly even in normal
patients, there are clear decreases in refractory period with sustained episodes of
AF.? These long-term changes in refractory period are likely to reflect the
fibrillation-induced changes in the expression of atrial ion channels. The present
study has shown that chronic AF is associated with a decreased outward K* current
density and a reduced expression of Kv1.5 o subunits. Our results suggest that
these changes are the result, rather than the cause, of the chronic AF.

Drugs that block K* channels (eg, sotalol, dofetilide, ibutilide) are now commonly
used to treat patients in AF. Clinical studies have shown that these drugs are most
effective in treating patients with recent onset AF (days to weeks). The present
study suggests that this loss of efficacy may in part be explained by the overall
reduction in outward K current, since an incremental suppression of a small
repolarizing current may be less effective than when normal densities of
repolarizing currents are present. Further studies aimed at identifying the
components of the outward atrial K* current that are reduced and the specific K*
channel subunits that are modulated by the presence of AF are also clearly
warranted. Once this information is available, it may be possible to develop new
therapeutic strategies for the treatment of AF that have fewer side effects than
currently available therapies.

Selected Abbreviations and Acronyms

AF  =atrial fibrillation

BDM =butanedione monoxime

DCM =dilated cardiomyonathy

Ik1 =inward rectifier K* current

Ik, =rapid and slow components of
ks  delayed rectifier K™ rurrent

| ksus =sustained outward K* current



I cur =ultrarapid delayed rectifier K*

current
IT0 =transient outward K* current
NSR =normal sinus rhythm
PAF =paroxysmal AF
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