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SUMMARY
Multiple sclerosis (MS) is a chronic demyelinating disease of unknownetiology that affects theCNS.While current therapies are primarily

directed against the immune system, the new challenge is to address progressive MS with remyelinating and neuroprotective strategies.

Here, we develop a highly reproducible protocol to efficiently derive oligodendrocyte progenitor cells (OPCs) and mature oligodendro-

cytes from induced pluripotent stem cells (iPSCs). Key elements of our protocol include adherent cultures, dual SMAD inhibition, and

addition of retinoids from the beginning of differentiation, which lead to increased yields of OLIG2 progenitors and high numbers of

OPCs within 75 days. Furthermore, we show the generation of viral and integration-free iPSCs from primary progressive MS (PPMS)

patients and their efficient differentiation to oligodendrocytes. PPMS OPCs are functional, as demonstrated by in vivo myelination in

the shiverer mouse. These results provide encouraging advances toward the development of autologous cell therapies using iPSCs.
INTRODUCTION

Multiple sclerosis (MS) is a chronic, inflammatory, demye-

linating disease of the CNS that is distinguished by recur-

rent episodes of focal inflammatory demyelination and

consequent neurological symptoms (relapsing remitting

MS [RRMS]). Although relapses usually resolve in sponta-

neous remission, RRMS can evolve with time into a

secondary progressive form characterized by irreversible

accumulation of disabilities. Furthermore, patients affected

by the most severe primary progressive form (PPMS) expe-

rience a steady neurological decline from the onset of the

disease (Antel et al., 2012). Currently available treatments

targeting the immune system are highly effective at

reducing or even stopping the intermittent episodes of

inflammation, but they do not influence the course of pro-

gressive MS. Therapeutic options for PPMS patients are

limited to symptomatic treatments and the long-term

prognosis is generally poor (Rice et al., 2013). Clearly, the

unsolved challenge in the MS field is to develop neuropro-

tective and remyelinating strategies for the treatment of

progressive MS patients (Hauser et al., 2013). The genera-

tion of patient-specific cells from induced pluripotent

stem cells (iPSCs) or somatic cell nuclear transfer has

recently emerged as a promising strategy for the develop-

ment of autologous cell therapies (Goldman et al., 2012;

Yamada et al., 2014). iPSC-derived oligodendrocyte pro-

genitor cells (OPCs) were shown to successfully remyeli-

nate and rescue a hypomyelinated mouse model, raising

the possibility of future clinical trials (Wang et al., 2013).
S

However, oligodendrocyte differentiation protocols are

still inefficient and require over 120 days in culture. There-

fore, an improved protocol that can generate large numbers

of purified OPCs in a relatively short time is highly desir-

able. Moreover, this protocol should be reproducible and

highly efficient among different iPSC lines, including those

derived from MS patients. We have pioneered the efficient

and robust generation of iPSC-derived OPCs from PPMS

patients. Our protocol recapitulates the major steps of

oligodendrocyte differentiation from neural stem cells to

OLIG2+ progenitors and finally to O4+ OPCs in a signifi-

cantly shorter time than the 120–150 days required by

the most recently published protocols (Wang et al., 2013;

Stacpoole et al., 2013). Furthermore, O4+ OPCs were

able to differentiate into MBP+ mature oligodendrocytes

in vitro and to myelinate axons in vivo when injected

into immunocompromised shiverer (shi/shi) mice. No

abnormal growths were observed. Our results provide a

proof of concept that transplantation of iPSC-derived, pa-

tient-specific cells for remyelination is technically feasible.
RESULTS

Retinoic Acid Is Critical for Efficient Differentiation of

PSCs to Oligodendrocytes

We aimed to develop an efficient differentiation protocol

that recapitulates the critical developmental stages of oligo-

dendrocyte specification as it occurs in the spinal cord. In

this process, PAX6+ neural stem cells give rise to OLIG2+
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progenitors, which become committed to the oligodendro-

cyte lineage by coexpressing NKX2.2 (pre-OPCs). They

then differentiate to early OPCs by upregulating SOX10

and PDGFRa, followed by late OPCs expressing the sulfated

glycolipid antigen recognized by the O4 antibody, and

finallymature tomyelin basic protein (MBP)+ oligodendro-

cytes (Hu et al., 2009a).We utilized an OLIG2-GFP knockin

human embryonic stem cell (hESC) reporter line to track

the OLIG2+ progenitors by live fluorescent imaging (Liu

et al., 2011). First, we induced PAX6+ cells using dual inhi-

bition of SMAD signaling in adherent cultures (Chambers

et al., 2009). Next, to mimic the embryonic spinal cord

environment, we applied different concentrations of reti-

noic acid (RA) and/or sonic hedgehog (SHH) at various

times and quantified the OLIG2-GFP expression by flow

cytometry (Figure 1A). Application of 100 nM RA from

the beginning of induction generated 40.6% of OLIG2+

progenitors, whereas addition of SHH at 100 ng/ml from

day 8 increased the yield to 57.7% (Figure 1B). Interest-

ingly, cells without exogenous SHH during the first

12 days showed an upregulation of SHHmRNA (Figure S1A

available online) and differentiated to O4+ cells, although

at a lower efficiency compared with cells treated with

SHH (Figure S1B). We then replaced the recombinant

human SHH protein with the smoothened agonist (SAG),

which increased the yield further to 70.1%OLIG2+ progen-

itors (Figure 1B). At day 12, cells were detached for sphere

aggregation. The minimum number of cells required to

form a sphere was 100, and we noted that the majority of

the cells in the spheres were GFP+. To investigate this

further, we sorted d12 cultures for GFP and observed that

only GFP+ cells formed aggregates, whereas the GFP� pop-

ulation did not (Figure 1C). This suggests that the aggrega-

tion step alone provides enrichment for the OLIG2+

population.

Next, we validated the initial steps toward the generation

of OLIG2+ progenitors by differentiating a second hESC

line (RUES1) and comparing the transcript levels of PAX6,

OLIG2, and NKX2.2 by quantitative RT-PCR (qRT-PCR).

The upregulation of these transcription factors followed a

temporal pattern similar to that of the OLIG2-GFP line,

with PAX6 induction around day7, OLIG2 peak around

day 13, and sustainably high levels of NKX2.2 after day
Figure 1. RA and SHH Requirement to Derive OLIG2+ Progenitor C
(A) Live imaging and flow-cytometric quantification of OLIG2-GFP c
and SHH.
(B) Comparison between the addition of SHH or SAG at day 8 and the b
line RUES1.
(C) Assessment of sphere formation for unsorted or sorted GFP+ and G
(D) Temporal gene-expression profile for PAX6, OLIG2, and NKX2.2
independent experiments). Scale bars represent 500 mm.
See Figure S1 for further optimizations of RA and SHH.
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10 (Figure 1D). Based on these results, we used the nonge-

netically modified RUES1 line to develop the following

steps of the protocol from OLIG2+ progenitors to MBP+

mature oligodendrocytes (Figure 2A). PAX6+ cells arose at

day 7, and by day 12 they were arranged into multilayered

structures (Figures 2B and 2C). From day 12 to day 30

the cells were grown as spheres, and they were then

plated onto poly-L-ornithine/laminin-coated dishes for

the remainder of the differentiation protocol.

To promote maturation toward the O4+ stage, platelet-

derived growth factor AA (PDGF-AA), hepatocyte growth

factor (HGF), insulin-like growth factor 1 (IGF1), and neu-

rotrophin 3 (NT3) were added to the culture medium

from day 20 onward. OLIG2+ progenitors upregulated

NKX2.2 (pre-OPCs) and then SOX10 (early OPCs), and

they finally matured to late OPCs, which were identified

by O4 live staining and by their highly ramified processes

(Figures 2D–2G). O4+ OPCs expressing OLIG2, SOX10,

and NG2 (Figures 2H–2J) appeared as early as day 50 and

increased dramatically around day 75. During the differen-

tiation, 40%–50% of progenitor cells were proliferative, as

indicated by Ki67 staining. However, the highly ramified

O4+ cells did not divide in vitro (Figures S2A–S2C). Addi-

tionally, 34% ± 4% of O4+ OPCs differentiated into MBP+

mature oligodendrocytes after growth-factor withdrawal

from the medium for at least 3 weeks (Figures 2K, 2L,

and S2D). Our cultures also consisted of other cell types

(15% ± 2%GFAP+ astrocytes and 20% ± 2%MAP2+ neurons

of total cells, respectively; Figures 2M and S2E).

Oligodendrocytes Can Be Efficiently Generated from

PPMS-iPSC Lines

To determine whether this protocol could be applied to

iPSC lines from subjects with PPMS, we obtained skin

biopsies from four PPMS patients. Fibroblast cultures were

established from the biopsies and iPSCs were generated

using a cocktail of modified mRNAs (Warren et al., 2010)

together with a cluster of miRNAs to improve the reprog-

ramming efficiency (StemGent). From day 12 to day 15 of

reprogramming, TRA-1-60+ colonies (Figure S3A), identi-

fied by live staining, were picked, expanded, and character-

ized by immunofluorescence for pluripotency markers

(Figure S3B).
ells
ells at day 14 of differentiation under different conditions for RA

est RA condition via live imaging and FACS analysis. Negative: hESC

FP� cells.
under optimal RA and SHH conditions. Error bars are SEM (n = 3
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Figure 2. Generation of Oligodendrocytes from Human PSCs
(A) Diagram of the protocol for differentiation from hPSCs to mature oligodendrocytes.
(B–M) Sequential steps of in vitro oligodendrocyte differentiation of RUES1 cells, showing PAX6+ neural stem cells at day 8 (B), phase
contrast of the multilayered structures at day 12 (C), OLIG2+NKX2.2+ pre-OPCs at day 18 (D), SOX10+OLIG2+ early OPCs (E), live imaging of
O4+ late OPCs (F), a cropped image of O4+ cells to highlight the ramified processes (G), O4+ OPCs coexpressing OLIG2 (H), O4+ OPCs
coexpressing SOX10 (I), sorted O4+ OPCs coexpressing SOX10 and NG2 (J), terminally differentiated MBP+ oligodendrocytes at low (K) and

(legend continued on next page)
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Expression profiling for seven pluripotency genes

confirmed that all four iPSC lines exhibited a profile com-

parable to that of a reference hESC line and divergent

from the parental fibroblasts (Figure S3C). All iPSC lines dis-

played a normal karyotype (Figure S3D) and were able to

differentiate into cell types of the three germ layers, both

in vitro via spontaneous embryoid body differentiation

(Figure S3E) and in vivo via teratoma assay (Figure S3F).

Next, we assessed whether the oligodendrocyte differen-

tiation protocol was reproducible with our PPMS-iPSC

lines. All iPSC lines tested were found to perform similarly

to the RUES1 line (Figures 3A–3I). The protocol was greatly

reproducible and highly efficient as calculated by the fre-

quency of sorted O4+ OPCs, with up to 70% O4+ cells

from RUES1 and 43.6%–62.1% from the PPMS-iPSC lines.

Additionally, we found that the O4+ fraction contained a

subpopulation of cells double positive with PDGFRa (Fig-

ure 3J). O4+ cells could be easily purified by fluorescence-

activated cell sorting (FACS), frozen, and thawed without

losing their morphology (Figure S4D).

PPMS-Derived Late OPCs Myelinate Axons in the

Mouse Brain

To verify that OPCs obtained through our protocol were

functionally myelinogenic, we injected d75 FACS-purified

O4+ cells into the forebrain of neonatal, immunocompro-

mised shiverer mice (105 cells/animal; Figure S4A). The in-

jected cells were depleted of any contaminant iPSCs, as

shown by flow-cytometry analysis of the pluripotency

markers SSEA4 and TRA-1-60 (Figure S4B). However, we still

purified our cultures before in vivo transplantation to

retain the potential for translation to clinical studies. Cells

were frozen, thawed, and allowed to recover for 24–48 hr

before transplantation (Figure S4C). Animals were sacri-

ficed at 12–16 weeks, at which point human hNA+ cells

were distributed throughout the corpus callosum and fore-

brain white matter. The density of hNA+ cells in the corpus

callosum was 34,400 ± 3,090 cells/mm3 at 12 weeks and

approximately double that by 16 weeks. We did not

observe the presence of cell clusters or overt tumorigenesis,

and the proliferative fraction of engrafted hNA+ cells was

17% at 12 weeks and decreased to only 8% Ki67+ at

16 weeks when only 5% of cells were PCNA+ (Figure 4H).

Importantly, more than 80% of hNA+ cells in the corpus

callosum coexpressed OLIG2 protein, suggesting that the

engrafted cells were restricted to the oligodendrocyte line-

age (Figure 4I). Furthermore, human MBP+ oligodendro-

cytes were found diffusely throughout engrafted corpus
higher (364; L) magnification, and MAP2+ and GFAP+ cells in oligode
cell; OPC, oligodendrocyte progenitor cell; OL, oligodendrocyte; pO/L
Scale bars represent 500 mm (B and K), 2 mm (C), and 200 mm (D–F
quantification of MBP+ OLs and MAP2+ and GFAP+ cells.

S

callosum at 12 and 16 weeks (Figure 4A). At 16 weeks,

31% ± 3% of host mouse axons were ensheathed within

the engrafted mouse corpus callosum (Figure 4B).

We then asked whether PPMS-derived OPCs could form

compact myelin. Transmission electron microscopy on

16-week-old corpus callosum revealed mature compact

myelin with the presence of alternating major dense and

intraperiod lines (Figures 4C and 4D), whereas uninjected

shiverer/rag2 mice possessed thin and loosely wrapped

myelin (data not shown). Likewise, the thickness of myelin

ensheathment, as assessed by g-ratio measurement, re-

flected a restoration of normal myelin in several callosal

axons.

At 12 weeks, transplanted cells remained as NG2+ OPCs

in the corpus callosum (Figure 4E), and by 16 weeks they

started to migrate to the overlying cerebral cortex (Fig-

ure 4F). Very few O4-sorted cells underwent differentiation

as hGFAP+ astrocytes and themajority of hGFAP+ cells were

localized to the subventricular zone and around the ventri-

cles (Figure 4G), suggesting that the local environment

may induce astrocytic differentiation in these regions.

Similarly, hNESTIN-expressing cells were rarely found in

the corpus callosum and likewise concentrated in the

subventricular zone (data not shown). Importantly, bIII-

TUBULIN+ neurons were not detected in any of the en-

grafted animals. Taken together, our data demonstrate

that PPMS-derived, O4-sorted cells were capable of

achieving mature oligodendrocyte differentiation in vivo

and forming dense compact myelin resembling normal

myelin in the brain.
DISCUSSION

In this work, using a fast and highly reproducible protocol,

we demonstrated efficient in vivo myelination of neurons

by iPSC-derived OPCs from PPMS patients. A previous

report on MS-derived iPSCs showed that oligodendrocytes

could be differentiated in vitro from an integrating, retro-

virally reprogrammed iPSC line from one 35-year-old

RRMS patient (Song et al., 2012); here, we generated four

integration-free iPSC lines from PPMS patients of both

sexes and with ages ranging from 50 to 62 years.

Since most protocols for oligodendrocyte differentiation

have been optimized using only one or two hESC lines and

their reproducibility with iPSC lines is controversial (Alsa-

nie et al., 2013), we tested our protocol with two hESC

and four hiPSC lines derived from PPMS patients. Previous
ndrocyte cultures (M). PSC, pluripotent stem cell; NSC, neural stem
, poly-L-ornithine/laminin.
, H–J, and M). See also Figure S2 for proliferation assessment and
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Figure 3. PPMS iPSCs Generate OPCs and Mature Oligodendrocytes In Vitro
(A–I) Sequential steps of in vitro oligodendrocyte differentiation of PPMS iPSCs, showing PAX6+ cells at day 8 (A), multilayered structures
in phase contrast at day 12 (B), OLIG2+ and NKX2.2+ cells at day 12 (C), SOX10+OLIG2+ early OPCs (D), live imaging of O4+ late OPCs at day

(legend continued on next page)
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work has elegantly shown that iPSC-derived OPCs from

healthy controls were able to rescue a mouse model of hy-

pomyelination, although differentiation to the O4 stage

was rather inefficient and required more than 120 days

(Wang et al., 2013). We provide an improved differentia-

tion protocol and further proof that patient-specific iPSC

lines can be successfully used to generate oligodendrocytes.

We obtained 44%–70%O4+ cells in all lines after 75 days of

differentiation, compared with the minimum of 120 days

required according to previous reports (Wang et al., 2013;

Stacpoole et al., 2013). There are several critical differences

between our approach and previously published protocols.

First, we began neural induction with dual SMAD inhibi-

tion in adherent as opposed to suspension cultures (Nistor

et al., 2005; Hu et al., 2009b; Wang et al., 2013). Using this

approach, we started with only 10,000 cells/cm2 of iPSCs at

day 0 and achieved a great expansion of neural progenitors,

ultimately generating an abundance of human OPCs. The

use of RA and SHH as caudalizing and ventralizing

patterning agents recapitulates the signals that are present

around the pMN domain of the spinal cord, from which

motor neurons and oligodendrocytes are believed to arise

(Hu et al., 2009a). The high efficiency in the generation

of OLIG2+ cells at d12 can be explained by the synergistic

effect of activin/nodal receptor kinase inhibition, BMP4 in-

hibition, and RA and SHH signaling (Patani et al., 2011;

Miller et al., 2004). The optimal concentration of RA in

our hands is 100 times less than the concentration

commonly used by other groups (Nistor et al., 2005; Izrael

et al., 2007; Gil et al., 2009; Hu et al., 2009b). Surprisingly,

induction with RA alone (without exogenous SHH) gener-

ated a large population of OLIG2+ cells. While the combi-

nation of RA and fibroblast growth factor (FGF) signaling

is known to promote OLIG2 expression during chicken

development and has been used for in vitro differentiation

of both hESCs and hiPSCs (Novitch et al., 2003; Nistor

et al., 2005; Pouya et al., 2011), we achieved OLIG2 induc-

tion in the absence of any exogenous FGF in our culture

conditions. We show that RA, synergistically with the

dual inhibition of SMAD proteins, upregulates OLIG2 (Fig-

ure S1C), possibly by stimulating the endogenous expres-

sion of SHH (Figure S1A). We confirmed that SAG is an

efficient replacement for SHH and indeed showed superior

efficacy in our hands (Stacpoole et al., 2013). The addition

of HGF to themedium, although not essential, appeared to

slightly improve the differentiation efficiency (data not
73 (E), a cropped image of O4+ cells to highlight the ramified processe
magnification, and MAP2+ cells in the oligodendrocyte cultures (I).
(J) Quantification of O4+ cells after 75 days of differentiation from RU
Ab-APC only for O4 staining and PE-conjugated isotype control for
positive and O4/PDGFRa double-positive cells) are shown in brackets
Scale bars represent 200 mm (A, C–E, G, and I) and 2 mm (B). See Fig

S

shown; Hu et al., 2009c). Finally, the transition from

adherent cultures to spheres proved to be a critical step to

enrich the OLIG2+ population and possibly restrict differ-

entiation to the oligodendrocyte lineage.

In human development, OPCs are characterized by

PDGFRa and NG2 expression, followed by expression of

O4 (Jakovcevski et al., 2009). Under our culture conditions,

by day 75, most of the O4+ cells had lost PDGFRa, but re-

tained NG2 expression. At this stage, we did not observe

any residual pluripotent cells in culture. Our study differs

from recent work in that our iPSC lines were derived from

PPMSpatients and the cells used for in vivo transplantation

were sorted using the late-OPC marker O4 to maximally

restrict the differentiation potential. Despite these differ-

ences, the PPMS-derived, O4+-sorted OPCs exhibited a

similar engraftment efficiency, mitotic fraction, and pro-

portion of host ensheathed axons while generating fewer

GFAP+ astrocytes comparedwith the unsorted iPSC-derived

OPCs reported previously. Taken together, our data suggest

that PPMS-derived OPCs performed in vivo at least as effi-

ciently as healthy iPSC-derived cells (Wang et al., 2013).

These proof-of-principle experiments establish that our

OPC induction protocol can generate myelinogenic oligo-

dendrocytes from patient samples and may be useful for

the development of autologous cell-replacement therapies

for MS in the future.

iPSC technology is also emerging as a tool for developing

new drugs and gaining insight into disease pathogenesis

(Han et al., 2011). Our differentiation protocol will aid

the development of high-throughput in vitro screens for

compounds that promote myelination (Lee et al., 2013).

Furthermore, the PPMS iPSC lines described here provide

an additional resource for investigating the process of neu-

rodegeneration in MS. Future studies comparing PPMS

iPSCs and appropriate healthy control iPSC lines will be

needed to shed light on the potential intrinsic differences

among patient-derived oligodendrocytes.
EXPERIMENTAL PROCEDURES

Subjects
Skin biopsies were obtained fromdeidentified PPMS patients at the

Tisch Multiple Sclerosis Research Center of New York, upon insti-

tutional review board approval (BRANY) and receipt of informed

consent. All four patients were diagnosed with PPMS according

to the standard diagnostic criteria. All patients were Caucasian.
s (F), MBP+ mature oligodendrocytes at low (G) and higher (364; H)

ES1 and PPMS iPSCs via FACS analysis. Gates are based on secondary
PDGFRa staining (negative). Total O4+ cells (including O4 single-
.
ure S3 for characterization of PPMS-iPSC lines.
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Figure 4. PPMS-Derived OPCs Engraft and Differentiate to Myelinogenic Oligodendrocytes In Vivo
(A) PPMS-iPSC-derived O4+ OPCs (105) were transplanted into neonatal shiverer/rag2mice. At 16 weeks, MBP+ oligodendrocytes are widely
distributed throughout the corpus callosum.
(B) Confocal image showing colocalization of mouse axons and MBP+ human oligodendrocytes.
(C and D) Electron micrographs of myelinated axons exhibiting characteristic compact myelin with alternating major dense (arrowheads)
and intraperiod lines.
(E) Human cells retain progenitor characteristics, expressing a human specific-NG2 antigen (individual cells marked by arrows; 12 weeks).
(F) At 16 weeks, individual NG2 cells have begun to migrate into the overlying cerebral cortex.

(legend continued on next page)
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Two patients were male (56 and 61 years old) and two were female

(62 and 50 years old).

Cell Lines
Three hESC lines and four hiPSC lines were used for the study.

RUES1 and HUES 45 are both NIH-approved hESC lines. The

OLIG2-GFP reporter line is derived from the BG01 hESC line and

was a gift from Dr. Ying Liu (University of Texas Health Science

Center at Houston). Four iPSC lines were derived in our laboratory

from skin biopsies of PPMS patients through the mRNA/miRNA

method (StemGent).

Oligodendrocyte Differentiation Protocol
hESCs and hiPSCs were induced to neural differentiation through

dual SMAD inhibition together with 100 nM all-trans RA. At day 8,

SAG (1 mM)was added to themedium, and at day 12, adherent cells

were lifted and seeded in low-attachment plates to favor sphere

aggregation. Spheres were cultured in the presence of RA and

SAG. At day 30, spheres were plated into poly-L-ornithine/lami-

nin-coated dishes and cells were allowed to migrate out of the

sphere. At this stage, PDGFmediumwas used to promote OPC for-

mation, and from day 75 onward, glial medium was used to drive

oligodendrocyte maturation. For the qRT-PCR primer sequences

and media compositions used, see Tables S1 and S2, respectively.

Transplantation into Shiverer 3 Rag2�/� Mice
All experiments using shiverer/rag2mice (a gift from Dr. Steven A.

Goldman, University of Rochester;Windrem et al., 2008) were per-

formed according to protocols approved by the University at

Buffalo Institutional Animal Care and Use Committee. Injections

were performed as previously described (Sim et al., 2011) and the

animals were sacrificed 12–16 weeks later. Cryopreserved coronal

sections were cut and immunohistochemistry was performed as

described previously (Sim et al., 2011). For transmission electron

microscopy, tissue was processed as described previously (Sim

et al., 2002). For a list of the primary antibodies used, see Table S3.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, four figures, and three tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2014.06.012.
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