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SUMMARY

Investigation of human CNS disease and drug effects
has been hampered by the lack of a system that en-
ables single-cell analysis of live adult patient brain
cells. We developed a culturing system, based on a
papain-aided procedure, for resected adult human
brain tissue removed during neurosurgery. We per-
formed single-cell transcriptomics on over 300 cells,
permitting identification of oligodendrocytes, micro-
glia, neurons, endothelial cells, and astrocytes after
3 weeks in culture. Using deep sequencing, we de-
tected over 12,000 expressed genes, including hun-
dreds of cell-type-enriched mRNAs, lncRNAs and
pri-miRNAs. We describe cell-type- and patient-spe-
cific transcriptional hierarchies. Single-cell transcrip-
tomics on cultured live adult patient derived cells is a
prime example of the promise of personalized preci-
sion medicine. Because these cells derive from sub-
jects ranging in age into their sixties, this system per-
mits human aging studies previously possible only in
rodent systems.

INTRODUCTION

The adult human brain is composed of an intricate network of
multiple cell types that interact in direct and indirect ways. Dis-
eases and drugs uniquely and differentially target these various
cell types. Single-cell studies allow the highest resolution to
assess this variability and cell-type-specific effects. Most past
single-cell neuronal cell work has been performed in rodents
(Dueck et al., 2015; Miyashiro et al., 1994; Tasic et al., 2016; Zei-
sel et al., 2015). Cell type studies in humans have been largely
limited to postmortem studies (Hawrylycz et al., 2015; Lake
et al., 2016), cancer cell lines, and, more recently, acute harvest

of cells from patients (Darmanis et al., 2015; Zhang et al., 2016).
Although these studies provide valuable human transcriptomic
information, the cells’ acute harvest provides no means for
morphological or long-term functional investigation other than
sequencing. Cell selection methods limit the collection to sub-
populations of each cell type, and nucleus sequencing likely re-
sults in an incomplete picture of the entire transcriptome. Some
studies have focused on human embryonic stem cell (ESC)- and
induced pluripotent stem cell (iPSC)-derived neurons to create
induced neuron (iN) cells that can produce de novo synaptic con-
nections (Zhang et al., 2013). For studying human CNS disease
and drug effects, patient-derived fibroblasts used for iPSCs
and stem cells are distinctly affected by disease and drug ther-
apy. Developing and validating a model system that is easily
manipulated to investigate the function and responsiveness of
a broad range of cell types in the human brain is needed. A cul-
ture system that supports long-term survival of multiple adult cell
types harvested from the adult human brain would enable an un-
derstanding of human cell-type-specific gene regulation without
the confounding effects of species differences, cell line effects,
or those introduced by trans-differentiation.
We have developed a culturing system for healthy adult human

brain cells from patient biopsies collected at the time of surgery.
These cells were cultured up to 84 days in vitro (DIV) and
analyzed with deep sequencing of hundreds of single cells to
obtain their individual RNA expression profiles. The single-cell
resolution of this study allows us to measure the range and vari-
ance of expression of key genes and shows that mouse-derived
cell type markers can be inappropriate discriminators of human
cell types (Darmanis et al., 2015; Hawrylycz et al., 2015; Zhang
et al., 2016). Use of human-sourced enriched gene lists sup-
ported by functional pathway analysis resulted in consistent
identification of cell types and subtypes using multiple bio-
informatic and statistical methods (k-means clustering, gene
ontology [GO] annotation enrichment, etc.). We further identified
cell-type-enriched primary microRNA (pri-miRNA) and long non-
coding RNA (lncRNA) as well as potential transcription factor
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control pathways of genes that are candidates for driving the
expression of subpopulations of the cell-type-defining genes.

We find that cells maintain their cell type classification
throughout their time ex vivo. Morphological analysis of tran-
scriptome-profiled cells suggests that transcriptionally distinct
cell types can have a wide range of cell morphology in culture
(Zhang et al., 2016) that we extend to other cell types. The human
culturing system allows long-term maintenance and character-
ization of cells derived from a broad range of age groups (the
oldest subject assessedwas 63 years old). Importantly, such pri-
mary cell cultures, by design, will be absent their in vivo cellular
connections because the natural microenvironment has been
disrupted and, hence, will be somewhat different from their
in vivo cellular counterparts. However, the ease of use and de-
cades of fundamental and clinical data resulting from primary
cells suggest that cultured adult human brain cells will be useful
in understanding the fundamentals of neuronal cell functioning
and responsiveness. This adult human primary cell culture
resource provides a means for CNS drug testing.

RESULTS

Cortical and hippocampal biopsies were collected from seven
patients at the Hospital of the University of Pennsylvania. Three
of the patients were diagnosed with epilepsy, and the remainder
were diagnosed with a brain tumor; e.g., glioblastoma, World
Health Organization (WHO) grade IV, at a distance from the
cortical biopsy site (6.825 ± 2.484 mm SD; Figure S1). Four
were white females, two white males, and one African-American
male, ranging in age from 24–63 years. Tissues were delivered
to the laboratory in ice-cold oxygenated artificial cerebrospinal
fluid (aCSF) approximately 10 min after excision. The tissue was
dissociated, plated, and maintained in an incubator at 37!C, 5%
CO2. The cells in primary cell culture displayed complexmorpho-
logical characteristics with smooth processes when present and
no obvious vacuoles, highlighting their overall health (Chen et al.,
2011; Figures 1A–1C). Cells were collected by pipette aspiration
between 1 and 84 days after plating (Figure 1E; Table S1). The
age of cells that do not divide is the age of the donor plus the

Pt. A G E FMAID Diagnosis
22 24 M C 242635 Epilepsy
50 63 F C 270258 GBM
52 39 F C 270342 Epilepsy
64 56 M AA 270781 GBM
76 47 M C 270797 GBM
82 32 F C 270282 GBM
85 45 F C 270348

275024
Epilepsy

A B C

D E

Figure 1. Healthy Long-Term Adult Human
Brain Cell Cultures
(A–C) Representative healthy brain cells at 2 (A),

4 (B), and 8 (C) weeks in culture, respectively.

Scale bars, 20 mm.

(D) Summary of patient information, including

age, gender, ethnicity, FMAID for biopsy location,

and diagnosis. M, male; F, female; C, white; AA,

African-American; GBM, glioblastoma. Patient 85

also had samples harvested from the hippocam-

pus in addition to the cortical FMAID listed.

(E) Images of culture pre- (left) and post-harvest

(right) of a single cell usingmicropipette aspiration.

Scale bar, 20 mm.

See also Figure S1.

time in culture. For cells such as astro-
cytes that divide, the cell age is mixed
based on the number of cell divisions

that occurred in the patient and, subsequently, in culture. Each
single cell’s (Figure 1D) RNA was aRNA-amplified and deep-
sequenced. On average, we obtained approximately 22.5 million
(M) unique mapping reads per sample, of which approximately
60% were exonic reads that mapped to an average of 12,000
genes. When compared with publically available genotype tissue
expression (GTEx) tissue transcriptome data, these single-cell
transcriptomes had the greatest overlap with the whole-brain tis-
sue samples of all brain cell types (Figure S1).

Marker- and Pathway-Based Identification of Human
Brain Cell Types
To identify cell classes from the transcriptome data, we first
clustered based on cell type marker expression. In our and other
groups’ experiences, mouse cell type markers sometimes fail to
provide strong discrimination of comparable human brain cell
types (Darmanis et al., 2015; Zhang et al., 2016). To obtain an
initial classification, we used a list of 129 ‘‘marker genes’’ that
have been used to successfully discriminate between multiple
human brain cell types (Darmanis et al., 2015). As shown in
Figure 2, of the 303 adult human brain cells that met our quality
standards, we used k-means clustering (k = 8; Experimental
Procedures) to group 187 single cells into classes (5 oligoden-
drocytes; 35 microglia, 42 neurons, 32 endothelial cells, and 73
astrocytes), with the remainder of the cells falling into three
unknown classes (49, 45, and 22 cells, respectively; Figure 2A;
Table S1). Although many of these unknown cells share some
gene expression patterns with astrocytes, they were unable to
be confidently classified into the six cell type gene sets. Impor-
tantly, the presence of aged adult human cortical neurons in
long-term primary cell culture stands in distinction to the mouse
system, where it has been difficult to perform primary culture of
adult mouse cortical neurons.
To examine the effectiveness of human curated gene lists

for revealing mouse cell types and vice-versa, we examined
k-means clustering (k = 8) of previously described mouse sin-
gle-cell data (Tasic et al., 2016). First, we used mouse homologs
of a human curated gene list (Darmanis et al., 2015) to cluster the
"1,600 mouse cortical single-cell transcriptomes reported by
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Tasic et al. (2016). There is a high degree of concordance in the
original paper’s cell type annotations and cluster membership
using homologous human curated genes (Figure 2B). We found
overlap between the original cell type annotation and new clus-
ters as follows: astrocytes, 100% in cluster 6; neurons, 99.8% in
cluster 4, 99.7% in cluster 1, and 99.2% in cluster 8; endothelial
cells 74.7% in cluster 5; microglia, 95.6% in cluster 2; and oligo-
dendrocyte precursor cell (OPC), 100% in cluster 7 and 71.4% in
cluster 3. We also used human homologs of 109 mouse genes
described by Tasic et al. (2016) to carry out the same k-means

clustering on our data (Figure 2C). These mouse markers suc-
cessfully clustered many brain cell types; however, there were
large groups of genes that were expressed in multiple clusters,
meaning they were not cell-type-specific in the human.
We next augmented the initial classification by assessing the

activation of signaling pathways central to each putative cell
type’s function. We curated a list of publically available pathway
databases and scored each pathway’s activation levels. The
pathways included four neurotransmitter release pathways to
represent neuronal function, cell-cycle pathways to represent

Figure 2. Identification of Cell Types Using Human and Cross-Species Markers
(A) Using human cell typemarkers, cells fell into eight transcriptional groups representing oligodendrocytes, microglia, neurons, astrocytes, endothelial cells, and

unknown.

(B) Mouse homologs of the human curated cell type marker gene list were used to cluster the"1,600 mouse cortical single-cell transcriptomes reported by Tasic

et al. (2016), showing strong concordance with the original paper’s groupings.

(C) We used human homologs of 109 mouse genes described by Tasic et al. (2016) to carry out the same k-means clustering, showing concordance with our

groupings but more varied expression and less defined expression patterns for each grouping.
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dividing cells such as astrocytes, and immune response path-
ways to represent microglial function. K-means clustering
(k = 8)wasperformed on eachpathway for all samples (Figure 3A;
Table S2). There was substantial overlap between the pathway
clustering and the marker based cell type classifications. Astro-
cytes were the most common type in cluster 1 (55%) and cluster

7 (46%). Cluster 4 mostly consisted of cells from the unknown_2
cell type, whereasmicroglia were themost common type in clus-
ter 6 (48%), and the neurons made up 71% of cluster 8 (Table
S3). Endothelial cells and oligodendrocytes were spread over
all of the clusters without a major dominant cluster assignment
because there were no suitably unique pathways for their

Figure 3. Pathway Activity Based on Unsupervised Clustering of Data
(A) K-means clustering of cells based on pathway activity (see Table S2 for exact pathway names). Top bar, pathway cluster; Bottom bar, marker-based cell type.

(B) PCA analysis of the entire expressed (non-null) transcriptome, showing clusters that correspond well with the cell types determined by k-means clustering

using only human cell type marker genes.

(C) Identical PCA analysis color-coded based on DIV, showing DIV spread across clusters.

(D) Identical PCA analysis color-coded based on patient source ID, showing that although there is a primary patient representing themajority of points in each cell

type, each cell type cluster does have multiple patients represented.

See also Figure S3.
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functions in the pathway databases. Limits in the available cura-
tion of pathways in relation to specific cell function constrained
the resolution of this analysis, but neurons in marker gene anal-
ysis showed the highest degree of neurotransmitter pathway
activation, microglial cells showed distinct immune pathway
activation, and astrocytes showed the highest degree of cell-cy-
cle pathway activation.
We examined the dispersion patterns for the total transcrip-

tome in contrast to the curated gene sets discussed (above). Fig-
ures 3C–3E show 2D principal component analysis (PCA) ordina-
tion of the whole transcriptome with covariates (Figure 3B, cell
type assignments by curated genes; Figure 3C, culture dates;
Figure 3D, patient ID). Although cultures from some patients
were enriched in a given cell type, each cell type was seen in
multiple patients, highlighting a cell type robustness that
extends beyond a single patient’s mRNA signature. Additionally,
although we were limited by sample availability, cells of varying
DIV were represented in each patient and each cell type. Further,
PC1 separation was not dominated by any of the covariates,
suggesting no dominant batch effects.

Stability of Cell Classification
We sought to characterize moderate- to low-abundance tran-
scripts by high-depth sequencing. Because it is more common
to sequence single-cell data to lower depth, we examined the ef-
fect of reducing sequencing coverage by creating randomly
down-sampled datasets of 1 million, 0.5 million, and 0.1 million
reads (Experimental Procedures). The effects of down-sampling
dependupon the relative frequencydistribution of the transcripts,
and, therefore, different cell types and gene classes maybe
affected differently. We examined the effect of the number of
genes segregated by marker-defined cell type and gene classes
(Figure S3). Over all cell types and gene classes, down-sampling
resulted in a loss of"52%, 60%, and 77%of the observed genes
for 1M, 0.5M, and 0.1M sequencing depth. The greatest loss oc-
curs for the neuron transcriptomes, with loss of"63%, 77%, and
85%, respectively, for 1M, 0.5M, and 0.1M sequencing depth.
The least loss is seen in the astrocyte cells, with "36%, 44%,
and 65%, respectively, for the same set of sequencing depths.
For the different gene classes examined here (transcription fac-
tors, lncRNAs, pri-miRNAs and signal pathway genes), no partic-
ular class seemedmore or less affected than the overall loss rate
(other than transcription factors in neurons), suggesting that
genes belonging to these classes are evenly distributed within
the frequency distribution. Nevertheless, we note that, at a low
sequencing depth of 0.1M reads, we fail to see between "55%
to 88% of genes in transcription regulation pathways. Down-
sampling had anegligible effect on classification by the penalized
linear discriminant analysis (PLDA) function, with less than 1%
change in accuracy from the original full dataset for all cell types
and all down-sampled treatments. This result is consistent with
the idea that shallow-depth sequencing can be useful for identi-
fication of major cell types, although lower-abundance genes
critical to specific cellular function and specification will be
missing. These data also highlight the fact that these cell classi-
fications and some subclassifications could be documented
with hundreds of cells compared with the thousands of cells
that have been reported elsewhere.

Classifying Brain Cells by Morphology and Non-coding
RNA Profiles
For each of the sequenced cells, we imaged the cell prior to har-
vest to capture its morphology. We estimated a morphological
classification tree using six morphological features scored
from the images taken prior to RNA collection: gross cell size,
cell shape, cell process, process complexity, cell margin, and
cytosol/nuclear ratio (Table S1). Multiple morphologies were
observable for each cell type (Figure 4). The maximum parsi-
mony method was used (Swofford et al., 1996), and morpholog-
ical trees were computed using the TBR heuristic search option
in the program PAUP* (Swofford, 2003). We identified 31 distinct
morphological groups where all cells within each group had the
same constellation of morphological features (Figure S2). The
maximum parsimony tree split into two major branches, broadly
separated into cells that were generally bigger with either simple
or complex processes and cells that were generally smaller
without processes. Cell boundary states or cytosol/nuclear ratio
features did not co-vary with cell subclasses. Particular morpho-
logical features showed variable association with the transcrip-
tional cell types. For example, there were putative astrocytes
with both complex and simple processes (Figures 4A and 4B),
putative microglia with cell bodies that were very similarly sized
or much larger than their nuclei (Figures 4C and 4D), large and
small putative neurons (Figures 4E and 4F), and putative endo-
thelial cells with and without processes (Figures 4G and 4H).
As suggested by the representative images of the range of mor-
phologies (Figure 4), examining cell morphology within each
transcriptional cell type showed variable distribution of morpho-
logical traits for many cell types. We found that the vast majority
of astrocytes were both large (98%) and had processes (99%),
endothelial cells were mostly large (86%) but only 45% had pro-
cesses, 67% of microglia were large and 58% had processes,
and 65% of neurons were large and 78% had processes. The
oligodendrocytes were divided with regard to size and process
presence, but the small sample size in that class made it difficult
to characterize (Table S1). To match the threshold used
to select the cell type markers, we used 60-fold enrichment to
identify genes associated with process-bearing cells. These
genes were significantly enriched in GO terms such as synapse,
neuron projection, cell junction, and axon (Bonferroni-corrected
p = 0.003, 0.004, 0.02, and 0.05, respectively), thus suggesting
the possibility that higher expression of these genes either re-
sults from or is responsible for the presence of processes.
We next assessed non-coding RNA expression, lncRNA and

pri-miRNA, as possible discriminators of cell types because of
their role in simultaneously modulating multiple genes. Using a
curated list of 935 lncRNAs (Amaral et al., 2011) to perform a
k-means cluster analysis (k = 8) of all of our samples, we found
that there were lncRNA clusters, each strongly associated with
marker-based cell types: cluster 2 with 69% of endothelial cells,
cluster 6 with 71% of astrocytes, cluster 1 with 55% of neurons,
cluster 5 with 80% of microglia, and cluster 8 with 80% of oligo-
dendrocytes (Figure 5A; Table S1). A similar analysis of the 30
pri-miRNAs in our data showed that clusters found using only
pri-miRNAs was generally disconcordant with marker gene-
based clusters, although there was one cluster with a high de-
gree of overlap with microglia.
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Cultured Adult Human Brain Cells Lacked Stem Cell
Signatures
Although the cells analyzed were cultured from normal tissue
harvested during the course of surgery, we wanted to evaluate
the possible expression of proto-oncogene mRNA expression
in cells from cancer patients (Vogelstein et al., 2013) to rule out

the possibility that we had cultured oncogenic cells. We found
enrichment of only one proto-oncogene (EGFR) in the cells
from cancer patients over those from epilepsy patients. In addi-
tion, the tumor suppressor p53 is also expressed at similar or
elevated levels in these cells from patients across all diseases,
suggesting the normal anti-oncogenic function of p53 is intact
in these cells. Because many of these samples are sourced
from patients with glioblastoma, we are cognizant of the phe-
nomenon of brain cells de-differentiating to a stem cell nature
during tumorigenesis, indicated by a loss of mature cell type
markers and increased expression of Oct4, Sox2, c-Myc, and
Klf4 (Friedmann-Morvinski et al., 2012; Li et al., 2011). Expres-
sion levels of these genes across diseases in our sample set
did not show broad expression of these markers, except for
Sox2 expression, which was present across cells of all diseases
and not restricted to glioblastoma samples. Furthermore, Sox2 is
known to be expressed by astrocytes and is, therefore, alone not
a good measure of the stem-like phenotype (Xia and Zhu, 2015).
There was one cell of 300 that did have expression of the four
stem cell genes, but it fell into one of the unknown cell type cat-
egories. This suggests that we are able to detect stem cells but
that the vast majority of our cells are adult, mature, and differen-
tiated cells.

Cell Type-Enriched Markers for Human Brain Cells
Using our marker gene-based classification, we examined cell-
type-specific gene expression patterns to detect new markers.
Again, to match the threshold used to identify cell type markers,
we first identified genes that were enriched >60-fold in each cell
type compared with every other cell type in a pairwise fashion.
This analysis produced hundreds of additional candidate cell
type markers for human cells (Table S4). We performed a GO
term enrichment analysis for these genes and found significant
enrichment of immune response genes in microglia, neuron
ensheathment annotations in oligodendrocytes, neurogenesis
and projection development in neurons, blood vessel and extra-
cellular matrix organization genes in endothelial cells, and astro-
cyte differentiation and synapse support genes in astrocytes
(Figure 6A).
In addition to these individual genes, we used PLDA to find

a weighted linear combination of genes that would have high
utility for identifying each cell type (Witten and Tibshirani,
2011).We extracted a discriminant axis for each cell type against
every other cell type (Figure 6B). The PLDA functions resulted
in a cross-validation (1:1) accuracy of 97%, 97%, 99%, 89%,
and 99%, respectively, for marker-defined astrocytes, neurons,
endothelial cells, microglia, and oligodendrocytes. The genes
with large absolute value loading coefficients in the PLDA axis
overlapped significantly with the original 129 marker genes (Ta-
ble S5). The PLDA generated highly accurate classifiers using the
whole transcriptome, with the penalization constraint to sparsely
utilize the gene features. We examined the distribution of abso-
lute value of the coefficient loadings for each cell type (Figure S4),
which showed that most of the information is concentrated
within the top 20 genes. It is desirable to reduce the feature set
as much as possible to guard against over-fitting. Therefore,
we constructed new PLDA classifiers based on the top 20 genes
for each cell type. The cross-validation (1:1) accuracy ranged

A B 

C D 

E F 

G H 

Figure 4. Range of Cell Morphology
(A–D) Astrocytes were observed with both complex (A) and simple processes

(B), and microglia had cell bodies that were very similarly sized (C) or much

larger than their nuclei (D).

(E–H) We observed both large (E) and small (F) neurons and endothelial cells

with (G) and without processes (H).

Scale bar, 20 mm. See also Table S1 and Figure S2.
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from 94%–99%, showing the utility of this reduced discriminant
function (Table S6). We used the reduced PLDA function to
analyze the cells in the three previously unknown clusters (Fig-
ure 2A) and were able to assign identities to 45 of 116 unknown
cell types (Table S7). We propose that the PLDA functions will
have utility for identification of human cell types and for decon-
volving cell mixtures into single-cell frequency counts (by ex-
pressing a tissue expression value as linear combinations of
these discriminant axes).

Cell Type-Specific Transcription Factor Binding Sites,
pri-miRNAs, and lncRNAs in Human Brain Cells
Using the genes enriched in each cell type, we asked whether
there was potentially shared control of the genes by cell-type-
specific transcription factor and/or miRNA binding motifs en-
riched in those genes using the ToppGene suite (Chen et al.,
2009). Although there was some overlap between oligodendro-
cytes and neurons, every cell type had unique transcription fac-

tors that potentially controlled their enriched genes’ expression
(Table S7). For example, oligodendrocyte-enriched genes had
enrichment in AP4 and MyoD (likely because of homology with
OLIG1/2, (Hernandez and Casaccia, 2015)) transcription factor
binding sites, whereas many microglial genes have potential to
be controlled by PEA3. Neuronal genes had enrichment of mul-
tiple transcription factor and miRNA biding sites.
The presence of pri-miRNAs in our transcriptome was ex-

pected because pri-miRNAs have poly-A tails that can be ampli-
fied in our procedure. We performed differential expression
analysis to identify cell type-enriched pri-miRNAs (Figure 5B).
We found that MIR6723 is more highly expressed in neurons
than in astrocytes, endothelial cells, and microglia, whereas
MIR6818 is more highly expressed in neurons than in astrocytes
and endothelial cells. MIR1199 and MIR335 are more highly
expressed in oligodendrocytes than in any other cells. MIR145
is more highly expressed in endothelial cells than in astrocytes,
microglia, and neurons. It has been shown previously that

Figure 5. Noncoding RNAs Are Enriched in Cell Types and Can Discriminate Cell Types
(A) 3D PCA analysis of normalized lncRNA expression shows dispersion patterns that are generally consistent with marker-based cell types.

(B) Average normalized pri-miRNA expression in each cell type for significantly differentially expressed pri-miRNAs and the distribution of expression, highlighted

by the violin plot, which shows the probability density for each pri-miRNA.

(C) Normalized lncRNA expression levels highlighting lncRNAs enriched in a single cell type (first five lncRNAs), enriched in multiple cell types (NEAT1), and

SNGH6, which is highly expressed in all cell types (Figure S5), and violin plot showing the probability density for each lnc RNA.
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endothelial cells expressMIR145 for critical regulation of smooth
muscle cells in the peripheral vasculature (Hergenreider et al.,
2012). Our study suggests that endothelial cells in the brain
also express MIR145, which targets genes related to adherens
junction and tight junction pathways. MIR335, which is highly ex-
pressed in oligodendrocytes, targets genes related to the neuro-
trophin signaling pathway (Vlachos et al., 2012).

To identify cell-type-dependent long noncoding RNAs, we
performed differential expression analysis on lncRNAs by cell
type. Among 935 lncRNAs, 113 lncRNAs are differentially ex-
pressed across cell types (Figures 5C; Figure S5). There was
a range of expression from strong single cell type enrich-
ment (i.e., LINC01314 astrocytes, LINC00152 endothelial cells,
LINC00520 microglia, MEG3 neurons, and LINC01105 oligoden-

drocytes) to enrichment in a subset of cell types (i.e., NEAT1 high
in astrocytes and endothelial cells) to shared expression across
all cell types (i.e., SNHG6; Figure 5C). Meg3, which we found to
be enriched in neurons, has been found previously in GABAergic
neurons (Mercer et al., 2010).

mRNA Profiles Predict Neuronal Subclasses
Some of the CNS cell types have well known subclasses. For
example, neurons are often categorized as excitatory or inhibi-
tory; other researchers have argued for 7 to 16 neuronal sub-
types in humans and at least 28 in mice (Darmanis et al., 2015;
Lake et al., 2016; Zeisel et al., 2015). In an attempt to subdivide
adult human neurons into finer subclasses, we used a curated
list of possible excitatory or inhibitory markers (Darmanis et al.,

A

B

Figure 6. Cell Type-Specific Analysis
(A) Summary of enrichment of GO terms for each cell type. * indicates GO terms significantly enriched < 0.05 with Bonferroni correction; others listed are < 0.05

without correction.

(B) Histogram of PLDA score distribution for each of the five different cell types. The x axis of each plot shows the PLDA scores, whereas the histogram shows the

scatter of the cells. The top colored panels show the cell type of interest, whereas the black bar panels show the other cell types.

See also Tables S4, S5–S7, S8 and Figure S3.

798 Cell Reports 18, 791–803, January 17, 2017



2015; Fish et al., 2011; Takamori, 2006). Marker expression sug-
gested a mixed biology, with many cells expressing both excit-
atory and inhibitory markers, that has been observed previously
in other species. We hierarchically clustered the neurons using
this gene list and found that the cells fell into five clusters, and
many displayed the possibility of co-release of neurotransmitters
(Figure 7). Cluster 1 had relatively high expression of SPARC,
suggesting cells undergoing significant remodeling and neurite
outgrowth. Cluster 2 had high expression of calbindin 1
(CALB1) and almost no expression of glutamate decarboxylase
1/2 (GAD1/2, often used as markers of inhibitory neurons), sug-
gesting that this cluster represents a group of CALB1+ excitatory
neurons (Chard et al., 1995). Groups 3 and 5, with their expres-
sion of GAD1, are likely both inhibitory, although finer distinction
was not obvious. Group 4 has mid-level expression for many
excitatory and inhibitory linked genes but stronger expression
of inhibitory markers, highlighting an example of cells exhibiting
co-release probability. These findings show the importance of
single-cell resolution phenotyping of neuronal subclasses to
accurately assess the range of unique possible cell types that
may result in mixed neurobiology.

Identification of Patient-Associated miRNAs and
Transcription Factors
Although these cells were frommultiple patients with varying dis-
eases and disparate ages and whose cells were cultured for
different lengths of time, there remained underlying patient-
based transcriptional patterns that were shared between cells.
By grouping the samples by patient, we identified a differentially
expressed gene list defined as expressed >60-fold over at least
four other patients and performed enrichment analysis for many
factors using ToppGene (Chen et al., 2009). For example, there
were 351 genes that were enriched in samples from patient 52
(Table S8), excluding those that were specifically linked to a cell
type (as listed in Table S1). This gene set showed significant
enrichment inbeingcontrolledby theETS2,ELF1, andPEA3 tran-
scription factors, whereas a similar analysis of patient 64 showed
regulation by a number of transcription factors, including E2F,
E2F1, and many others but also showed strong regulation by
miRNAs (for example, 519a, 500, 24, 1284, and 29c; p < 0.05,
Bonferroni-corrected). Similar analyses were completed for all
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Figure 7. Multiple Excitatory and Inhibitory
Neuronal Subtypes
Shown is a heatmap of neuronal gene expression

with hierarchical clustering of cells based on

expression of canonical excitatory and inhibitory

marker genes. Red boxes highlight distinct

expression patterns of critical genes. Left to right:

two excitatory and three inhibitory neuronal clus-

ters are clear based on expression of GAD1 and

patterns of other critical neuronal genes.

patients. They highlight a variety of shared
and distinct control patterns of genes
across patients, including precursor mi-
croRNA (miR) expression. Interestingly,
patients 64 and 85 have very little in com-

mon, including exhibiting different diagnoses, genders, and eth-
nicities. However, both show enrichment of miR29 a, b, and c
binding sites in their enriched gene set, suggesting that there is
some other environmental or genetic commonality resulting in
the need for similar regulation of miR29-regulated genes.

Single-Cell Drug-Induced Transcriptome Modifications
We also attempted to dissect the patterns of gene expression
associated with patient drug treatment history. To identify these
genes, we compared expression patterns within each drug-
treated sample type to non-drug-treated samples using a
recently developed single-cell differential expression (SCDE)
package (Kharchenko et al., 2014). Because of the inevitable un-
even sampling of drug treatments between patients, many of
the treatment factors were compounded, and power for distin-
guishing effects was low. After correction for multiple testing,
in endothelial cells, we found association in Keppra and dexa-
methasone treatment (compounded together) for the genes
(adjusted p value in parentheses): GFAP (0.002), CD14(0.041),
HTRA3 (0.041), and PDPN (0.041). Other suggestive cell type/
drug/gene differential test results are listed in Table S9. These
data will benefit from additional patient samples from similarly
drug-treated individuals.

DISCUSSION

Investigating human disease and cellular response to drug ther-
apy is most appropriately performed in humans. Such experi-
ments are most conveniently performed in a culture system for
ease of access, solution perfusion, manipulation, and imaging.
Until now, there has not been an adult human brain cell culturing
system for such studies. Here we report the ability to culture
healthy adult primary brain cells for months. Although adult ro-
dent brain cell cultures are difficult to generate, human brain
cell cultures did not suffer the same attrition. The cells exhibited
healthy morphologies and maintained strong cell type marker
RNA expression, suggesting that these cells thrive as their true
cell types, not as a shadow of their original robustness. This sys-
tem allows for the investigation of human disease and drug ef-
fects at the single-cell level with the added capability of perform-
ing testing in a cell-type-specific manner.
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In our desire to analyze single human brain cell transcrip-
tomes and cellular variability in expression profiles, we have
deep-sequenced over 300 single cells from adult human brain
primary cell cultures, enabling us to identify various cell types.
Conventional wisdom would suggest that each type of cell has
a set of known markers whose abundant presence consistently
defines a cell phenotype (Redwine and Evans, 2002). Recent
work in mice using Cre-mediated fluorescent tagging of marker
positive cells has begun to highlight the range of cell types in
mice expressing each presumptively canonical cell-specific
marker (Tasic et al., 2016). Similarly, our study has shown that
adult human brain cells also exhibit non-cell-type-restricted
expression of many such ‘‘canonical’’ markers; however, other
RNAs can serve as appropriate markers. .

This cell type subgroup analysis led us to three conclusions.
First, although we have samples from multiple ages, diseases,
and drug treatments, we found that the cell type expression
profiles were robust enough to stand out among this bio-
logical variation. Second, we have a better idea of the vari-
ability in gene expression that results in subclasses of cells
in the human brain. For example, markers found using popula-
tions of cells would suggest a simplicity and almost bimodal
(on/off) expression of these genes between cell types that is
generally not observed for mRNA in the human system. Often
marker genes derived from mouse studies are not highly
expressed and are sometimes absent in human cells in the
cell type they are presumed to define. A network of genes
relevant to the cell’s function whose expression determines
the cell’s fate, including lncRNAs and pri-miRNAs, appears
to be more relevant to cell identity rather than the high
expression of any one given mouse cell type derived marker.
Last, in part by comparing expression patterns in our cultured
cells to those harvested acutely from patient brains, we find
that there is a resiliency to the cell type expression profiles
(Darmanis et al., 2015) and in vivo morphology (Darmanis
et al., 2015; Fields, 2013) that is maintained in our cultures
that makes this system useful for studying primary oligo-
dendrocytes, endothelial cells, astrocytes, microglia, and mul-
tiple classes of interneurons and excitatory neurons, just to
name a few.

Morphology alone was not the best differentiator of these hu-
man cultured cells. In rodents, by contrast, a trained researcher
can easily differentiate between a neuron and astrocyte based
on classical shapes. Expanding upon recent findings (Zhang
et al., 2016), we found that the morphology of cultured human
astrocytes is less distinct and more complex than that of rodent
cultured astrocytes. There seems to be a larger number of cell-
type-associated morphologies than in rodent cultured cells,
possibly to meet the uniquely complex system demands on
each cell in the human system. Just as our preconceived notions
about marker gene expression based upon rodent studies are
more complex in the human system, so too are the expected re-
sponsivities of human cells. The transcriptomes of adult human
cells suggest a broader range of expression of surface channels
and receptors than in the mouse, with a likely broader range of
functional responses to stimuli. This is predicted by the higher
complexity of networks required to perform higher-level func-
tioning in humans.

In addition to morphological differences between human brain
cells and those from lower species, the defining genes that are
used as markers as well as those that drive that cell’s functional
phenotype can be distinct. Although mouse-derived oligoden-
drocyte markers were the most successful at distinguishing hu-
man oligodendrocytes from other cell types (high expression of
"60% of mouse oligodendrocytes markers in the majority of hu-
man oligodendrocytes), mouse-derived neuronal markers were
less successful (high expression of "3% of expressed mouse
neuronal markers in the majority of human neurons; Cahoy
et al., 2008). This may, in part, be due to the greater genetic
diversity of human patients in comparison with that of inbred
mouse strains. These realities highlight the necessity of using
human cells for human disease and drug studies.
In clustering these neurons into neuronal subtypes, we found

that the expression profiles were more complex than expected.
Interestingly, although cluster 1, shown in Figure 7, had the high-
est level of SPARC, all other neuronal clusters also expressed the
gene, suggesting a continual need and capacity for neural re-
modeling (Andres et al., 2011). Cluster 1’s low level expression
of many genes is in line with the possibility that they are highly
plastic cells able to adjust as the network needs require. We
hypothesize that stem cells have a low level of expression of a
wide range of genes, allowing for more rapid differentiation into
a mature cell as the need arises, and that these cells clusters
exhibit this profile feature. Similarly, cluster 4’s mid-level expres-
sion of many genes suggests a progenitor cell classification,
whereas its strong expression of GAD1 and ABAT suggests
that they are inhibitory. Together, this suggests a lack of full
commitment to a single cell type, perhaps enabling the plasticity
of the human brain to be directed by specific microenviron-
mental signaling cues. Cluster 2’s high expression of calbindin
1 (CALB1) which is involved in synaptic plasticity in excitatory
neurons (Chard et al., 1995), and near absence of GAD1 and
GAD2 suggest that this group is excitatory, although CALB1
has also been found in GABAergic neurons of the human cortex
(del Rı́o and DeFelipe, 1996). Groups 3 and 5 have strong
expression of inhibitory genes and low expression of many excit-
atory genes, suggesting that they are inhibitory neurons; how-
ever, there was a small but noticeable amount of expression of
traditionally excitatory neuron-linked genes, highlighting the like-
lihood of cells that co-release multiple neurotransmitters.
This mixed expression again suggests the functional plasticity

required by and built into the human nervous system. Some of
these cell groups contrast those observed by others (Darmanis
et al., 2015), in which five communities of interneurons were
composed of cells co-expressing PAX6/RELN, CPLX3/SPARC/
SV2C, and a distinct group of PVALB+ cells, among other dis-
tinctions. In our adult cells although we found that the majority
of PVALB+ cells fell in a single class, it was the class that
had low to mid-level expression of many genes. We did not
find a strong correlation between PAX6 and RELN, although
they were co-expressed in some cases or within the CPLX3/
SPARC/SV2C gene combination. In fact, in contrast to SPARC,
CPLX3 and SV2C had low and sporadic expression in our anal-
ysis. The transcriptional complexity we have observed has been
functionally shown by others, where neurons may not express
single neurotransmitters. For example, a neuron can express
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both glutamate and gamma-aminobutyric acid (GABA) and
be responsible for both types of signaling. This co-expression
of conventional excitatory and inhibitory markers is abundant
in our adult cultured human neurons and suggests a dramati-
cally altered cellular ipseity. The complexity of these data high-
light how difficult it is to determine a finite number of transcrip-
tion-based cellular subclasses that meaningfully exist. At the
extreme, each cell is a transcriptional and physiological ‘‘uni-
corn’’ exhibiting unique transcriptional profiles and physiological
interactions with the transcriptome, providing a ‘‘hypothesis as
to presumptive cell function.’’ The cellular environment plays
upon the cell’s transcriptome to produce cells of needed func-
tion, hence the observed transcriptional plasticity.
Even with the variability of adult human neuronal cell transcrip-

tomes we describe, there appear to be overriding cellular regu-
latory hierarchies, with the general cell type, such as neuron or
endothelial cell, being consistent across patients and diseases,
whereas there is also a patient-specific transcriptome that can
define an overall patient expression pattern. Because there are
many distinguishable cell types, this set of discriminators must
exert their function on top of the patient-specific discriminators.
These transcriptional networks likely result from hierarchical
epigenetic modification of cellular genomes, highlighting the
need for a robust single-cell epigenomic platform.
Although our drug-effect analyses were underpowered, we

were able to predict some long-lasting (6 weeks post-removal
from on-board patient drug therapy) drug-induced changes in
cell-type-specific gene expression. This long-lasting effect sug-
gests an epigenetic effect of these drugs on the patient. With
more patient-derived samples, this approach may prove to be
informative in drug efficacy studies as well as in assessing po-
tential adverse side effects. The techniques in this study are
potentially useful as an approach to personalized precision
medicine.
We have successfully cultured six major classes of brain cells,

identified enriched RNAs in each class, found systems that likely
control this gene enrichment, and have predicted alterations in
gene expression that are the result of in vivo therapeutic inter-
ventions in multiple cell types. Further, it is clear that many
RNAs should be designated as cell-type-selective rather than
cell-type-specific because the marker will likely be greatly en-
riched in one cell type but also be expressed in other cell types
in a non-defining manner. Primary culturing of adult brain cells
from human biopsies has allowed us to capture the range of
expression for each cell type and to glimpse the plasticity built
into the human system. In addition to providing a model system
to study human disease and drug treatments, these data have
provided insight into the plasticity and range of phenotypes
inherent in human brain cells that are necessary for the proper
functioning of the human brain.

EXPERIMENTAL PROCEDURES

Neurosurgery Harvest
Adult human brain tissue was collected at the Hospital of University of Penn-

sylvania (Institutional Review Board [IRB] #816223) using standard operating

procedures for enrollment and consent of patients,. Human brain tissue collec-

tion, handling, and de-identification of patient clinical data also followed stan-

dard operating procedures. The approximate region of cortex from which the

specimen was collected was identified using Brodmann area maps that were

then linked to the publicly available Foundational Model of Anatomy Ontology

(http://bioportal.bioontology.org/ontologies/FMA; Figure 1A; Figure S1A). Us-

ing cortex or hippocampal tissue that was resected as part of a neurosurgical

procedure for the treatment of epilepsy or brain tumors, we collected a 53 53

5 mm block of tissue. This tissue was immediately transferred to a sterile

container with ice-cold sucrose aCSF solution (2 mM CaCl2-2H2O, 10 mM

glucose, 3 mM KCl, 26 mM NaHCO3, 2.5 mM NaH2PO4, 1 mM MgCl2-6H2O,

and 202 mM sucrose, with 5% CO2 and a 95% O2 gas mixture) for transfer

to the laboratory. Sucrose aCSF was oxygenated for at least 1 hr before the

scheduled surgery to keep the brain tissue alive during transport. Tissues

arrived in the laboratory "10 min after excision.

Culturing
Brain tissue was digested using papain (20 U, Worthington Biochemical) and

incubated for 10–15 min at 37!C, followed by Leupeptin (a papain inhibitor,

100 mM, Sigma-Aldrich) to stop the reaction. After enzymatic dissociation,

centrifugation (1,500 rpm for 3min) followed by gentle mechanical dissociation

were performed with a fire-polished glass Pasteur pipette. The cells were

counted in an Autocounter (Invitrogen) using trypan blue (1%, Sigma-Aldrich)

to exclude dead cells. Cells were plated on poly-L-lysine-coated (0.1 mg/ml,

Sigma-Aldrich) 12-mm coverslips at a density of 3 3 104 cells/coverslip. Cul-

tures were incubated at 37!C, 95% humidity, and 5% CO2 in medium (Neuro-

basal B, 27%–1%; penicillin/streptomycin, 1%; Thermo-Fisher Scientific). The

medium was changed by replacing 50% with fresh medium every 3 days.

Morphology
Images were taken before harvest and analyzed. Six features were scored:

gross cell size with three states (0 = small, 1 = medium, 2 = large); cell shape

with three states (0 = radial and round, 1 = rod, 2 = radial and amorphous);

cell process with three states (0 = no processes, 1 = uni-directional processes,

2 = multi-directional processes); process complexity with three states (0 = no

process, 1 = simple processes, 2 = complex processes); cell margin with

two states (0 = smooth, 1 = rough); and cytosol/nuclear ratio with two states

(0 = small, 1 = large).

Amplification, Library, Sequencing, and Read Processing
Single cells were harvested using a microcapillary pipette (Morris et al., 2011).

Samples were snap-frozen until processing. Three rounds of standard aRNA

amplification were completed, followed by Truseq stranded library generation

as outlined by Illumina without the initial fragmentation step (Eberwine et al.,

1992; Hashimshony et al., 2012). Samples were sequenced using either an

Illumina Hiseq 2500 or Nextseq 500. After sequencing, reads were de-multi-

plexed with the CASAVA software package, version 1.8.2 (Illumina). Reads

were processed with the PennSCAP-T Pipeline (https://github.com/safisher/

ngs). Sequence alignments were performed with Spliced Transcripts Align-

ment to Reference (STAR) (Dobin et al., 2013). Exonic reads that uniquelymap-

ped to the Genome Reference Consortium Human Reference 38 (GRCh38/

Hg38) were processed with VERSE (BioRXiv) using a hierarchical assignment

scheme and the GENCODE 21 transcriptome. Samples with more than two

million uniquely mapping reads and more than 20% exonic mapping were

included in the analysis. Reads were normalized for differences in sequencing

depth across samples prior to all further analyses by scaling raw read counts

by sample-specific size factors as estimated in DESeq (Anders and Huber,

2010).

Computational Analyses
GTEx

Similarity in gene expression between single cells in this study andmultiple tis-

sues in the Genotype-Tissue Expression (GTEx) dataset (GTEx Consortium,

2013), a large-scale public resource for human gene expression across tis-

sues, was determined by digitizing the read counts of top-ranked highly ex-

pressed genes for each cell in this study according to several thresholds

(from 0 to 500, interval 10). We calculated the median across samples within

each tissue and digitized the read counts of top genes based on the median.

We computed the Jaccard similarity coefficient of the digitized read counts be-

tween each single cell and each tissue.
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PCA

Principal component analysis was performed using the R package in IDV

(http://kim.bio.upenn.edu/software/idv.shtml). Clustering was performed on

the full transcriptome, excluding genes with zero expression in all cells to

eliminate clustering based on null expression. The plot was then color-coded

to show the covariates for each comparison (marker-based cell type, DIV,

patient ID).

K-Means

K-means clustering of markers, pri-miRNAs, and lncRNAs was performed us-

ing the R package in IDV (http://kim.bio.upenn.edu/software/idv.shtml). To

assess the appropriate number of clusters for the k-means algorithm, we car-

ried out 2-fold and 5-fold cross-validation experiments for k = 2–15. For each

cross-validation experiment, we randomly split the data into training and test

and computed the k-means centroids on the training data. The test data

membership was fit to the closest centroid from the training data, and the

sum-within-cluster distance of the test data were defined as prediction error.

Randomized cross-validation experiments were repeated ten times for each k.

Table S4 shows the prediction error and its SE as a function of k. We estab-

lished an elbow in the reduction of prediction error between k = 6 and k = 8

(cf. Miligan and Cooper, 1985). We expected seven different types of cells

(excitatory neurons, inhibitory neurons, astrocytes, microglia, oligodendro-

cytes, oligodendrocyte precursor cells, and endothelial cells). To allow for

additional cell types, we chose k = 8 as for the cluster model. To identify the

best k-means clusters, we tuned the nstart option of the kmeans function in

the R package (nstart = 1,000).

Gene Annotations

The list of lncRNAs was the union of the human lncRNAs found in the lncRNA

database (Amaral et al., 2011) and genes beginning with ‘‘LINC’’ annotated in

gencode.v21 as Level-1,2 exons. Significant enrichment of miRNA and tran-

scription factor binding sites in the enriched genes for each patient and cell

type was determined using the ToppGene suite (Chen et al., 2009). Significant

enrichment of GO terms in genes enriched in each cell class was determined

using theGOEnrichment Analysis Suite as curated by the GeneOntology Con-

sortium (Gene Ontology Consortium, 2015).

Pathway Analysis

To find pathway-derived subgroups, we used neuron-related functions, im-

mune-related functions, and cell cycle- and signaling-related pathways from

the Molecular Signatures Database (MSigDB) v5.1 (Liberzon et al., 2011).

We focused on curated pathway gene sets from online pathway databases

such as BioCarta, Kyoto Encyclopedia of Genes and Genomes (KEGG), and

Reactome. Pathway activity is defined as the percentage of genes with

more than ten normalized reads in a pathway. The k-means method was

used for clustering pathway activity to identify pathway-dependent cell types.

PLDA Expression Analysis

We identified the genes that best discriminate between each cell type and other

cell types using PLDA (Witten and Tibshirani, 2011). The PLDA is a classification

technique that, by adopting sparsity constraints, achieves feature selection.

When the standard estimate for the within-class covariance matrix is singular,

theusual discriminant rulecannot beapplied. ByconsideringL1and fused lasso

penalties on the discriminant vectors, we can solve the problem efficiently. In

this study, the PLDA was implemented in the R package ‘‘penalizedLDA.’’ The

lasso penalty tuning parameter lambda = 1e#04 was used from several trials,

and the number of discriminant vectors was equal to the number of classes

minus 1 because it must be no greater than the number (classes# 1).

Random Sampling and Sequencing Depth

To assess the effect of a reduced sequencing depth, we used ‘‘sample’’

(https://travis-ci.org/alexpreynolds/sample), a function based on the algorithm

developed by Jeffrey S. Vitter that randomly samples read pairs from a SAM

file. We generated a series of down-sampled datasets where subsets of 1

million, 0.5 million, and 0.1 million mapped reads were randomly sampled

from the original dataset in this study, repeating 25 times for each down-

sampled level. To see how many genes are expressed in the original data

and down-sampled datasets, we compared the number of detected genes be-

tween the sets. Detected genes are defined as genes with a raw read > 0 in at

least 70% of samples for each cell type. To examine whether reduced

sequencing depth affects prediction accuracy, we applied the PLDA function

generated by the original dataset to the down-sampled dataset.

Differential Expression

For differential expression analysis of pri-miRNA and lncRNAs, we carried

out one-way ANOVA using cell type as a factor. For multiple corrections, we

applied the Benjamini-Hochberg method.

Morphology Analysis

For morphology grouping and covariance analysis, cell size, cell process, and

process complexity were treated as ordered states, whereas the remaining

features were treated as unordered states. Cells with identical feature scores

were grouped as a single unit, resulting in a total of 31 morphologically distinct

groups. Morphological trees were computed with the maximum parsimony

method (Swofford et al., 1996) using the TBR heuristic search option in the pro-

gram PAUP* (Swofford, 2003).

Drug-Mediated Differential Expression

SCDE analysis was used to find differences in mean gene expression between

drug-treated cells and drug-untreated cells. Cells were given a specific cell

type using the Benjamini-Hochberg method for multiple testing correction

(Kharchenko et al., 2014).
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