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Commercially available, highly passaged pancreatic cancer (PC) cell lines are of limited translational
value. Attempts to overcome this limitation have primarily consisted of cancer cell isolation and
culture directly from human PC specimens. However, these techniques are associated with exceed-
ingly low success rates. Here, we demonstrate a highly reproducible culture of primary PC cell lines
(PPCLs) from patient-derived xenografts, which preserve, in part, the intratumoral heterogeneity
known to exist in PC. PPCL expansion from patient-derived xenografts was successful in 100% of
attempts (5 of 5). Phenotypic analysis was evaluated with flow cytometry, immunofluorescence
microscopy, and short tandem repeat profiling. Importantly, tumorigenicity of PPCLs expanded from
patient-derived xenografts was assessed by subcutaneous injection into nonobese diabeteic.Cg-
Prkdc@4I(2rg™™ il /S2J mice. Morphologically, subcutaneous injection of all PPCLs into mice yielded
tumors with similar characteristics to the parent xenograft. PPCLs uniformly expressed class I human
leukocyte antigen, epithelial cell adhesion molecule, and cytokeratin-19. Heterogeneity within each
PPCL persisted in culture for the frequency of cells expressing the cancer stem cell markers CD44,
(D133, and c-Met and the immunologic markers human leukocyte antigen class II and programmed
death ligand 1. This work therefore presents a reliable method for the rapid expansion of primary
human PC cells and, thereby, provides a platform for translational investigation and, importantly,
potential personalized therapeutic approaches. (Am J Pathol 2016, 186: 1—10; http://dx.doi.org/
10.1016/j.ajpath.2016.02.009)

Pancreatic cancer (PC) is projected to be the second leading
cause of cancer deaths by 2030." Systemic cytotoxic and
kinase-targeted regimens represent the standard of care for
most patients presenting with PC. Most tumors, however, will
develop rapid resistance to these regimens and will continue
to progress by unknown mechanisms.”” As a result, both the
median survival and annual death rate for patients with PC
have remained unchanged over the past 20 years.” To this end,
an analysis of phase 1 cancer trials, which used agents with
demonstrated efficacy in models derived from established
commercially available cancer cell lines, revealed an overall
objective response rate in only 3.8% of patients. For the past
40 years, commercially available PC cells (PCCs) such as
MIA-PaCa2 (established in 1975),5 CFPAC-1 (liver

metastases established from a cystic fibrosis patient in 1990),°
PANC-1 (established in 1975),” and BXxPC-3 (K-ras wild-
type established in 1986)" have been widely used in PC
models and derived from an extremely small set of PC patients
from >30 years ago. Thus, the poor predictive value of
studies with the use of established cancer cell lines is a major
barrier to the development of new interventions.”' Our un-
derstanding of PC responses to therapy is also complicated
by the marked molecular heterogeneity that exists among
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primary tumors from different patients and intrapatient tumor
cell heterogeneity, neither of which can be captured with
currently available commercial cell lines."’

To begin to address some of these barriers, groups have
attempted direct isolation and culture of patient-derived
primary human PCCs from viable surgical specimens. The
success rate of this method was reported to be approxi-
mately 10% in experienced hands,'” although most groups
do not publish failed attempts.'”~'® Conversely, in other
cancer types, cell line derivation from patient-derived xen-
otransplantation demonstrates up to 10 times the success
rate compared with that from cancer specimens at the time
of resection.'” ™" Thus, to address these limitations, we
leveraged our recently developed PC—patient-derived
xenograft (PDX) model, whereby we have demonstrated
that the early PDX is morphologically similar to the original
cancer and retains both interpatient and intrapatient hetero-
geneity of the human disease.'””’

Specifically, here, we demonstrate the expansion of
human PCCs through a PDX model that preserves the tumor
heterogeneity with a 100% success rate. These established
PDX-derived primary cell lines display uniform markers
associated with a human PC origin with retained tumori-
genicity. In addition, after several passages, these PCCs
continue to exhibit significant heterogeneity in the expres-
sion of markers associated with their initial molecular
phenotype and PC-immune cell interactions. In summary,
this method of primary PCC isolation may provide a critical
model that enhances clinical relevance by augmenting pre-
clinical investigations and affording a personalized thera-
peutic examination.

Materials and Methods
Ethical Statement

Informed written consent was obtained from all patients,
and the collection of all patient material was approved by
the University of Florida Institutional Review Board. All
animal studies were performed in accordance with the
guidelines of the University of Florida Institutional Animal
Care and Use Committee.

Histologic Analysis

Human PC specimens and all xenografts were evaluated by
expert gastrointestinal pathologists, in accordance with the
World Health Organization Classification of Tumors of the
Digestive System. Tumors were classified according to site
of origin and tumor stage.

Tumor Transplantation

The implantation of surgical tumor tissue into immuno-
compromised mice was described previously.”’ Briefly, a
viable portion of resected tissue 2 X 2 mm in size was

isolated immediately from surgically resected primary PC
specimens with care to minimize critical ischemia time. PC
tissue was then implanted subcutaneously into an 8-week-
old female nonobese diabetic.Cg-Prkdc™II2rg™ ! “/SzJ
(NSG) mouse (The Jackson Laboratory, Bar Harbor, ME).
Xenografts were allowed to grow to a maximum diameter of
1.5 cm before passage and/or in vitro culture.

Isolation and Propagation of Patient-Derived PCC
Populations

Tissue collected from xenograft tumors was minced into
small pieces and enzymatically dissociated into single cells
with 2 mg/mL. STEMxyme 1 Collagenase/Neutral Protease
solution (Worthington Biochemical Corporation, Lake-
wood, NJ) for 30 minutes at 37°C. After washing with
Hank’s balanced salt solution that contained 2% of fetal
bovine serum, cells were filtered through a 100-pum filter to
remove nondissociated cell clumps. The single cell sus-
pension was then cultured in advanced Dulbecco’s Modified
Eagle Medium with nutrient mixture F12, 10% fetal bovine
serum, 6 mmol/L glutamine, 1% of penicillin/streptomycin,
and 40 ng/mL dexamethasone, at a density of 10> cells/mL
on culture plates coated with rat tail collagen I. Media
were changed every second or third day, and cells were
passaged with Accutase (Innovative Cell Technologies, San
Diego, CA) at 80% confluence. To avoid the outgrowth
of contaminating fibroblasts, differential trypsinization was
performed until a homogenous population of cytokeratin

(CK)19/class I human leukocyte antigen (HLA)-expressing Q8

human PCCs was achieved by flow cytometry analysis.

Isolation of Nucleic Acid, DNA Fingerprinting, and
Somatic Mutation Detection

DNA fingerprinting assays were performed to establish a
unique genetic identification for each patient’s PCC popu-
lation. Total genomic DNA was extracted from cell pellets
with Qiagen DNeasy Blood and Tissue kit (Qiagen,
Valencia, CA) according to the manufacturer’s protocol, and
sent to the Sanger Sequencing Core at the University of
Florida for cell line authentication. The identity of the DNA
profiles was determined by short tandem repeat profiling
with the use of GenePrint 10 System (Promega, Madison,
WI). This kit amplifies nine short tandem repeat human
loci (TPOX, vWA, D21S11, THOl, CSFIPO, D165539,
D75820, D13S317, and D55S818) and AMEL for sex iden-
tification, which was cross-referenced against patient sex.
The samples were processed on an ABI 3130XL Genome

Analyzer (Applied Biosystems, Foster City, CA), and data Q%
were analyzed with GeneMapper software version 4.0 ow

(Applied Biosystems). Fingerprints were then compared
with an established database of DNA profiles in the ATCC
(Manassas, VA) to verify uniqueness.

Isolated DNA was also profiled for 38 somatic mutations
within the following genes associated with PC: APC, BRAF,
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Isolation of Human-Derived PCCs

CDKN2A, CTNNBI, KRAS, NRAS, PIK3CA, SMAD4, and
TP53 with the use of the Pancreatic Cancer qBiomarker
Somatic Mutation PCR Array (Qiagen). Data were collected
on the Applied Biosystems 7900HT instrument, and
analyzed with the use of the Sequence Detection Systems
software version 2.4.1 (Applied Biosystems). Samples
were evaluated for the presence or absence of a specific
somatic mutation and were normalized to gene copy
reference assays for each gene present in the array.

In Vivo Tumorigenicity

To establish tumorigenicity of cultured primary PCCs,
3 x 10° cells from each patient’s cell population was sus-
pended in 200 pL of a 1:1 mixture of Dulbecco’s Modified
Eagle Medium with nutrient mixture F12 and Matrigel
Matrix (Corning, Corning, NY) and inoculated subcutane-
ously into the right flank of NSG mice. Mice were inspected
twice a week, and tumor size was measured with a digital
caliper. Mice were euthanized 40 days after the implanta-
tion. Tumors were fixed in 10% formalin and subjected to
histologic analysis with hematoxylin and eosin staining. The
growth rate (%/day) was used to evaluate the growth
kinetics of primary PCC.

In Vitro Cell Growth Kinetics

Short-term proliferation assays were performed to determine
growth rates in culture. Cells were seeded in 24-well plates at
1 x 10° cells/well on day 0. Cell number was determined with
the TC20 Automated Cell Counter (Bio-Rad, Hercules, CA)
on days 1 through 6. The growth curve was fitted to Gompertz
growth model with GraphPad Prism software version 6
(GraphPad Software, La Jolla, CA). Doubling time was
determined from the exponential phase with the use of the
equation In(2)/k, in which k is the rate constant. Assays were
performed in triplicate and repeated at least three times.

Immunohistochemistry and Immunocytochemistry

Tissue staining was performed by the University of Florida
Molecular Pathology Core. Briefly, formalin fixed, paraffin-
embedded patient tumors and PDX specimens were depar-
affinized and cut into 5-pum sections. Sections were stained
with hematoxylin and eosin. Additional 5-um sections of
PDX specimens were probed with anti—programmed death
ligand 1 (PDL1; Abcam, Cambridge, MA) according to the
manufacturer’s recommended protocol.

Primary PCCs were cultured on collagen-coated 24-well
plates and fixed in 4% paraformaldehyde for 15 minutes at
room temperature. After fixation, cells were permeabilized
and blocked in 3% bovine serum albumin and 0.1% Triton
X-100 for 1 hour at room temperature. The cells were then
incubated in 1% bovine serum albumin and 0.1% Triton
X-100 overnight at 4°C with the following antibodies: Alexa
Fluor 647 (AF647) anti-human CK18, AF647 anti-human

The American Journal of Pathology m ajp.amjpathol.org

epithelial cell adhesion molecule (EpCam), AF647 anti-
human CK19 (BioLegend, San Diego, CA), and rabbit
anti-human CD45 (Cell Signaling Technologies, Danvers,
MA) followed by Alexa Fluor 568 goat anti-rabbit sec-
ondary for 2 hours at room temperature. The DNA dye
DAPI was used to counterstain nuclei. Images were
collected on an EVOS FL digital inverted microscope (Life
Technologies, Carlsbad, CA) and processed with ImageJ

Q1

software version 1.48V (NIH, Bethesda, MD; htips:// Qs

imagej.nih.gov/ij/download.html).

Flow Cytometric Analysis

Cells were dissociated from 24-well culture dishes with the
use of Accutase, washed in Dulbecco’s phosphate-buffered
saline that contained 5% fetal bovine serum, 5 mmol/L
EDTA, and 0.1% sodium azide (Sigma-Aldrich, St. Louis,
MO), and probed for CD45, EpCam, CD44, CD133, HLA-
ABC, HLA-DR/DP/DQ, CD80, CD86, and PDL1 with the
use of the following antibodies: Pacific Blue-conjugated
CD45, Alexa Fluor 488 (AF488)-conjugated CD44,
phycoerythrin (PE)-conjugated CD133 (Miltenyi Biotec,
Bergisch Gladbach, Germany), PE-cyanin 7—conjugated
EpCam, allophycocyanin-cyanin 7—conjugated HLA-ABC,
PE-conjugated CD86, AF647-conjugated HLA-DR/DP/DQ,
PE-cyanin 7—conjugated PDL1, and allophycocyanin-H7—
conjugated CD80 (BD Biosciences, Franklin Lakes, NJ).
All antibodies were purchased from BioLegend unless
otherwise indicated and used at a 1:100 dilution. Manu-
facturer’s recommended isotype controls were used as
negative controls for all antibodies used. A total of 10,000
events per sample were acquired with a BD LSR II (BD
Biosciences), and data were analyzed with FlowJo data
analysis software version 9 (FlowJo LLC, Ashland, OR).

Gemcitabine Treatment and Cell Cytotoxicity Analysis

Cell were seeded in 96-well plate at a density of 5 x 10°
cells/well in a total of 100 uL of culture medium and treated
with gemcitabine (Selleck Chemicals, Houston TX) at mul-
tiple concentrations of 3, 10, 30, 100, and 300 nmol/L. and
1 pmol/L. After 6ix days, viability was analyzed with the Cell
Counting Kit-8 (Dojindo Molecular Technologies Inc.,
Rockville, MD), according to the manufacturer’s protocol.
The absorbance of yellow formazan dye, a derivative of water-
soluble [2-(2-methox y-4-nitrophenyl)-3-(4-nitrophenyl)-5-
(2,4-disulfophenyl)-2H-tetrazolium] monosodium salt from
dehydrogenase activity in cells was detected with colorimetric
microplate reader at 450 nm. This assay was performed in
triplicate and was repeated at least three times.

Statistical Analysis

Statistical analyses were performed with GraphPad Prism
software version 6 (GraphPad Software, La Jolla, CA). Data
are presented as means = SEM. P values were calculated with
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PPCL-46 PPCL-59

Figure 1

PPCLs, and PPCL-derived subcutaneous xenografts. Scale bars: 200 pm. PDX, patient-derived xenograft; PPCL, primary pancreatic cancer cell line.

the Student’s #-test with two-tailed distribution. P < 0.05 was
considered significant.

Results
Establishment of PPCLs from PDXs

Primary pancreatic cancer cell lines (PPCLs) were isolated
from PDX tumors which are enriched in patient-derived
PCCs, contrary to previous attempts at direct isolation from
resected PC specimens which are limited by a preponder-
ance of myofibroblastic elements and relatively few cancer
cells by volume.”” In addition, hepatic metastases from PC
primaries were expanded with the PDX model and similarly
isolated in culture. The isolation and expansion technique

[F1] had a 100% success rate (5 of 5 lines) (Figure 1). Early

depletion of murine tumor-associated stroma through
differential trypsinization was critical to allow for the
isolation of low-passage PCCs without the need for clonal
expansion methods. All PPCLs were passaged through at
least 10 generations without any sign of growth decline or
morphologic change.

The patient demographic and clinicopathologic data
associated with each patient from whom the PDXs and
PPCLs were derived are displayed in Table 1. PPCLs pre-
sented in this study were derived from PDX established
from both primary tumors (PPCL-46, PPCL-59, and PPCL-
68) and hepatic metastases (PPCL-LM1, PPCL-LM2). All
PPCLs demonstrated mutational profiles consistent with PC,
and all identified K-Ras and TP53 mutations were
conserved between primary tumor, PDX, and PPCL
(Table 1), short tandem repeat profiling with 10 loci and

Table 1  Clinicopathologic Characteristics and Mutation Profiles of Five PPCLs Established from Patient-Derived Xenografts

Positive lymph
1D Age, years Sex Tumor site nodes/total Overall survival, mo K-Ras TP53
PPCL-46 75 Female Primary 7/34 10 G12v WT
PPCL-59 73 Female Primary 4/15 Alive at 4 mo G12v WT
PPCL-68 64 Female Primary 2/18 Alive at 3 mo G12D R248W
PPCL-LM1 65 Male Metastasis NA 8 G12v WT
PPCL-LM2 63 Male Metastasis NA 2 G12v WT

mo, month; NA, not applicable; PPCL, primary pancreatic cancer cell line; WT, wild type.
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Table 2  Short Tandem Repeat Profiling of PPCLs

Locus PPCL-46  PPCL-59 PPCL-68 PPCL-LM1 PPCL-LM2
D55818 12 11 9,12 9,11 11, 12
D135317 9, 14 9, 12 8, 10 11, 13 11
D75820 9, 11 9 11 10 8
D165539 11, 13 9,13 13 10, 13 11, 12
vIVA 20 14, 18 15, 17 15, 16 15, 17
THO1 8,9 9.3 6 6,9.3 6

TPOX 10, 11 9,10 8,10 11 9
(SF1PO 12, 13 12 10 10, 11 10, 11
D21511 29 29 28 29 28, 32.2
AMEL X X X XY XY

PPCL, primary pancreatic cancer cell line.

cross-referenced against a known ATCC database, demon-
strated that all PPCLs generated were unique and sex
matched to the original patient. DNA fingerprinting results
are displayed in Table 2.

Purity of PPCLs

Because of the nature of the technique, contamination by
immune cells and fibroblasts from both human and murine
sources was evaluated. Flow cytometric analysis was used to
examine the expression of HLA class I, the immune cell
marker CD45, and the myofibroblast marker o-smooth muscle
actin (2-SMA). All PPCLs expressed HLA class I, whereby all
cultures were negative for both the leukocyte antigen CD45
and the mesenchymal antigen o-SMA, indicating the presence
of human cells in the absence of immune and fibroblastic
cells, respectively (Figure 2). PPCLs were further assessed
for the expression of the epithelial cell markers EpCam and

A  HAABC EpCam  CK19 CD45  oSMA
; /\ A |
2 | A f
2 |
A1l ]
F | |
2 AL |l
 AldA]
= 1’
g A
g i
: ﬂ / |
4 | | |
Figure 2

CK19, whereby flow cytometric analysis and immunofluo-
rescence microscopy demonstrated that all cultures were uni-
versally positive (Figure 2). Together these data demonstrate a
culture that consisted of human epithelial cells free from
immune and fibroblast contamination.

In Vivo and in Vitro Morphology and Growth Kinetics

To confirm tumorigenicity of PPCL, the ability of these
cultures to form tumors in NSG mice was determined.
Indeed, all PPCs were able to grow in vivo, albeit at different
rates (Figure 3A). Histologic analysis displayed similar
architectural structure to the parental PDX and original
tumors (Figure 1). All PPCLs isolated from PDX tumors
formed adherent monolayers in culture and also demonstrated
variable exponential growth in vitro (Figure 3B). Here,
PPCLs were broadly categorized into three subgroups as a
function of growth kinetics: slow (doubling time > 38 hours),
intermediate (doubling time 28 to < 38 hours), and fast
(doubling time < 28 hours). Interestingly, the in vitro growth
kinetics were comparable with the in vivo growth dynamics
of PPCLs as measured by the previously validated specific
growth rate (Figure 3D).”> Collectively, these data demon-
strate that all PPCL retain their tumorigenicity, regardless of
the heterogeneity in the growth rates observed. These results
support the tumor variability commonly observed in the
clinical setting.

Gemcitabine Chemosensitivity

Because chemosensitivity of PC is hypothesized to be
directly related to the proliferative capacity of cancer cells,

EpCam CK18 CK19 CD45
©
<
: - -
O
a
o
(2]
0
<)
: --
a
[
©
©
: --
O
o
o
-
=
-
-
(8]
o
o
N
: - -
-
4
O
a
o

PPCL population express markers consistent with pure human PCCs. A: PPCLs were examined for staining of HLA-ABC, EpCam, CK19, and CD45 and

a-SMA. Cells were gated according to forward/side scatter profiles, and isotype control histograms are shown in gray. B: PPCLs were analyzed for EpCam, CK18,
(K19, and CD45 expression with the use of immunocytochemistry. Each indicated marker is displayed in red. The nuclear stain DAPI is shown in blue. Scale bar,
20 pum. CK19, cytokeratin-19; EpCam, epithelial cell adhesion molecule; HLA, human leukocyte antigen; PPCL, primary pancreatic cancer cell line; a-SMA,

a-smooth muscle actin.
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o
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Growth dynamics and chemosensitivity of PPCLs. A and B: In vivo (A) and in vitro (B) growth curves of PPCLs through 6 and 40 days, respectively. Q17

The growth rate of PPCLs and corresponding tumors were evaluated. Mean tumor volume is presented at each time point. C: Dose-dependent response to
gemcitabine treatment of PPCLs, at concentration of 0, 3, 10, 30, 100, 300, and 1000 nmol/L. The ICs, of each line was measured. Viability at each concentration
is presented. D: The doubling time, in vitro and in vivo growth rates, and ICs, for each PPCL are summarized. Data are expressed as means + SEM. n = 3 (A and B);
n = 6 (C). All experiments were performed in triplicate. ICso, half maximal inhibitory concentration; PPCL, primary pancreatic cancer cell line.

the chemosensitivity to the clinically relevant antimetabo-
lite, gemcitabine, was evaluated for each PPCL established.
Interestingly, although all PPCLs were sensitive to gemci-
tabine treatment (Figure 3C), an inverse correlation between
proliferation rate and sensitivity was observed (Figure 3D).
These findings suggest that more diverse mechanisms than
rate of proliferation are responsible for antimetabolite
sensitivity.”*

Heterogeneity of PC Stem Cell Marker Expression

Dissociated PDX tumors have enabled careful experimental
probing of intratumoral heterogeneity, critical to the dis-
covery of PC stem cell markers.”” To assess whether the
heterogeneity observed above in the PPCL cultures extends
to PC stem cell markers, the established PC stem cell
markers CD44, CD133, and c-Met were examined by flow
cytometry.”® Interestingly, each PPCL demonstrated a
unique profile of CD44 and CD133 expression (Figure 4A),
exhibiting from 1% to 96% CD44"€"CD133" cells. Simi-
larly, differential c-Met expression was observed among
PPCLs, with each line demonstrating between 6% and 62%
c-Met™ cells (Figure 4B). Taken together, these experiments

demonstrate the continued presence of intratumoral cancer
stem cell heterogeneity in primary culture.

Expression of Antigen Presentation Machinery and
Costimulatory Ligands

The properties of PC epithelial cells may allow for evasion
of immune clearance through the down-regulation of HLA
and/or T-cell—activating costimulatory molecules and/or
up-regulation of T-cell inhibitory molecules.”” Thus, to
evaluate the extent to which the patient-derived PPCLs
express this antigen presentation machinery and cos-
timulatory molecules, flow cytometry was performed to
examine HLA class II (HLA-DR/DP/DQ), the activating
costimulatory molecules CD80, CD86, and the inhibitory
costimulatory molecule PDLI1. Interestingly, all PPCLs
expressed the inhibitory costimulatory molecule PDLI1
variably, with the highest expression observed in PPCLs of
metastatic origin (PPCL-LM1 and PPCL-LM2) (Figure 4C).
Immunohistochemical staining of PDX tumors for PDL1
correlated with cell line expression. As evaluated by a
board-certified pathologist, PDX tumors from all patients
except PPCL-46 were scored as staining positive with low
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Figure 4  PPCLs demonstrate heterogeneity in markers associated with cancer stemness and PC-immune cell interactions. A and B: PPCLs were evaluated for
the cancer stem cell markers CD44, CD133 (A) and c-Met (B). The percentage of cells positive for both CD144 and CD33 are indicated in the rectangular gate.

C: Immunohistochemical staining for PDL1 was performed on patient-derived xenografts from each patient. C—F: In addition, cell populations were analyzed
for the expression of the negative costimulatory marker PDL1 (C), antigen presentation machinery (HLA-DR/DP/DQ; D), and the positive costimulatory markers
CD80 (E) and CD86 (F). Histograms are shown for isotype controls (gray) and staining for the indicated marker (black). Scale bar = 200 um (C). HLA, human Q18
leukocyte antigen; PDL1, programmed death ligand-1; PPLC, primary pancreatic cancer cell line.
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intensity, whereas the PDX from PPCL-46 was negative
for PDL1 staining. Four of five PPCLs contained a sub-
population of HLA class II-expressing cells, which ranged
from 1% to 47% of cells (Figure 4D). None of the PPCLs
evaluated expressed the activating costimulatory ligands,
CD80 or CD86 (Figure 4, E and F). Heterogeneity of basal
PDL1 expression in unstimulated culture conditions repre-
sents an important, clinically relevant finding, given the
widespread use of PD-1 inhibitors in cancer.”® °' These
data reinforce the intraculture and interculture heterogeneity
of PPCLs and permit the retention of the immune evasive
phenotype in the tumor microenvironment.

Discussion

The capacity to isolate and culture primary human cancer
cells has initiated a surge of research in cancer biology that
has yielded valuable insights and potential development of
novel personalized therapeutic agents. Widespread use of a
common pool of commercially available, highly passaged
cancer cell lines, while promoting a high degree of inves-
tigative consistency, appears to experience diminishing
translational returns. An analysis of phase 1 cancer trials
supports this concept by demonstrating alarmingly low
success rates associated with therapies that were successful
in preclinical investigations.”> Both intertumor and intra-
tumor heterogeneity contribute to these translational limi-
tations, suggesting that not all tumors are created equal. Our
work highlights the need for investigational strategies that
incorporate this tumor heterogeneity to better characterize
the biology of PC and disease responsiveness to conven-
tional and experimental treatments.

To create an effective preclinical and translational model,
we leveraged our PC-PDX model to rapidly and effectively
generate purified populations of human PCCs in culture.
Primary PPCLs isolated in this manner retain significant
heterogeneity, which is commonly observed in the human
disease, both between patients and within individual tumors.
Importantly, we demonstrate a 100% success rate with
isolation of PPCLs that are available for experimentation as
early as 1 to 2 weeks after xenograft harvesting. Given the
high rates of success associated with the engraftment and
growth of PC-PDXs,>!*? the establishment of PDX-derived
PPCLs will provide a valuable tool to preclinical research
into the biology of PC and a reliable and time-saving
in vitro model for drug validation in personalized therapies.

It is important to recognize that other groups have
established variations of this technique for isolating PCCs
from PDXs. Both Kang et al** and Li et al’> have described
methods to dissociate PC-PDX into suspensions of viable
cells for further investigation. Kang et al’* then pursued
an outgrowth strategy from macroscopic tumor pieces in
culture with the use of standard RPMI-1640 media with
serum supplementation. However, in our experience, this
technique is associated with a high rate of stromal

contamination, likely necessitating their use of cloning rings
to isolate and expand pure PC cell lines. Here, we demon-
strate that the complete dissociation of the PDX is readily
achievable with the use of a gentle collagenase/dispase
cocktail and combined with epithelial-enhanced media,
which greatly reduces stromal cell contamination. The few
remaining stromal cells can then be removed with differ-
ential trypsinization, effectively preserving a large fraction
of PCCs from the original xenograft. Because of the high
efficiency of PCC preservation and early exponential
growth in culture, experimentation can typically begin
within 1 to 2 weeks of xenograft harvest, allowing for a
more reliable and genetically stable source of cancer cells
that are more predictive of clinical responsiveness.

PC stem cells were first described as a subpopulation of
PCCs with a high degree of tumorigenicity,” and careful
analysis of these subpopulations has identified multiple
therapeutic targets.”***’ However, as opposed to freshly
isolated primary cells, highly passaged established cancer
cell lines do not exhibit the same relation between cancer
stem cell markers and tumorigenicity,”” likely because of
the expansion of a homogenous population over long
periods of time in culture. Importantly, our model demon-
strates the retention of PCC heterogeneity in culture. Thus,
the method presented here may provide an experimental
framework to evaluate relations between cancer stem
cells, tumorigenicity, and therapeutic resistance for each
individual patient.

Translation of tailored treatment regimens on the individ-
ual patient level is exemplified by the routine practice of
molecular profiling in the clinical care for colorectal, lung,
and breast tumors.”” PDXs provide an attractive model for
personalized cancer therapy and have already shown promise
in the treatment of sarcomas.*’ However, freshly isolated
PPCLs will enable evaluation of the heterogeneity of cancer
cell biology and the identification of more appropriate targets
for therapeutic intervention. In addition, it will allow for
the potential high-throughput pharmacologic screening of
individualized therapeutics. Thus, the availability of PPCLs
coupled with the syngeneic PDX provides a much more
robust and personalized preclinical model for PC.

Given the recent success and continued evolution of im-
mune modulation in cancer,zg‘3 141—43 delineating relations
between cancer cells and the immune system will be critical.
A long-debated question in the field of immuno-oncology is
whether cancer cells are capable of antigen presentation to
CD4 T cells. Although the expression of HLA class II
and PDLI is a known consequence of interferon-y stimula-
tion,"** here, we observed a substantial proportion of
unstimulated PCCs stably expressing both HLA class II and
PDL1 in culture. This pattern of expression, in the absence of
positive costimulatory markers CD80 or CD86, has been
associated with highly regulatory immune cell phenotypes
and may contribute to the profoundly suppressive immune
microenvironment of PC.*”** Importantly, histologic exam-
ination of human PC specimens revealed an identical pattern
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to that observed in our primary PCC phenotyping for HLA
class II staining.”” Conversely, we have not observed any
basal expression of HLA class II expression in commercially
available, established PC cell lines PANC-1, BxPC3, and
L3.6 pl (data not shown), marking a significant phenotypic
departure of these highly passaged PC cell lines from our
PPCLs. Although the functional consequences of basal HLA
class IT and PDL1 expression remain speculative at this point,
these data certainly highlight that primary cancer cells may
also be critical to defining PC-immune cell relations.

In summary, here we introduce an efficient, highly suc-
cessful technique to isolate and expand a heterogeneous
population of patient-derived PCCs. Currently, the only
barrier at our institution to establishing each individual’s
PCCs in culture is the engraftment and growth of the PDX.
Combining a successful PDX program with consistent
isolation and expansion of cultured PPCLs may therefore
provide an opportunity to evaluate the biology and treatment
of PC on a highly representative scale. Importantly, PPCLs
may be cryopreserved and efficiently distributed between
institutions, ultimately focusing investigations to clinically
relevant subsets of this heterogeneous disease and enabling
a high degree of collaborative expertise.
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